• 제목/요약/키워드: Algorithm Learning

Search Result 4,976, Processing Time 0.033 seconds

Development of an Algorithm-Based Learning Content for Improve in Creative Problem-Solving Abilities (창의적 문제해결능력 신장을 위한 알고리즘 기반 학습 콘텐츠 개발)

  • Kim, Eun-Gil;Hyun, Dong-Lim;Kim, Jong-Hoon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.1
    • /
    • pp.105-115
    • /
    • 2011
  • Education is focused on how to nurture creative problem-solving skills talent in rapidly changing information society. The algorithm education of computer science is effective in improvement of students' logical thinking and problem solving capability. However, the algorithm education is very difficult to teach in elementary students level. Because it is difficult to understand abstract characteristic of algorithm. Therefore we developed educational contents based on the principle of the algorithm for improve students' logical thinking and problem-solving capability in this study. And educational contents contain interesting elements of the game. So, students will be interested in algorithm learning and participate actively through developed educational contents. Furthermore, students' creative problem-solving capability may improve through algorithm learning.

INCREMENTAL INDUCTIVE LEARNING ALGORITHM IN THE FRAMEWORK OF ROUGH SET THEORY AND ITS APPLICATION

  • Bang, Won-Chul;Bien, Zeung-Nam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.308-313
    • /
    • 1998
  • In this paper we will discuss a type of inductive learning called learning from examples, whose task is to induce general description of concepts from specific instances of these concepts. In many real life situations, however, new instances can be added to the set of instances. It is first proposed within the framework of rough set theory, for such cases, an algorithm to find minimal set of rules for decision tables without recalculation for overcall set of instances. The method of learning presented here is base don a rough set concept proposed by Pawlak[2][11]. It is shown an algorithm to find minimal set of rules using reduct change theorems giving criteria for minimum recalculation with an illustrative example. Finally, the proposed learning algorithm is applied to fuzzy system to learn sampled I/O data.

  • PDF

A New Learning Algorithm for Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1254-1259
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

  • PDF

A New Learning Algorithm of Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Ryu, Jeong-Woong;Song, Chang-Kyu;Kim, Sung-Suk;Kim, Sung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

Estimating Regression Function with $\varepsilon-Insensitive$ Supervised Learning Algorithm

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.477-483
    • /
    • 2004
  • One of the major paradigms for supervised learning in neural network community is back-propagation learning. The standard implementations of back-propagation learning are optimal under the assumptions of identical and independent Gaussian noise. In this paper, for regression function estimation, we introduce $\varepsilon-insensitive$ back-propagation learning algorithm, which corresponds to minimizing the least absolute error. We compare this algorithm with support vector machine(SVM), which is another $\varepsilon-insensitive$ supervised learning algorithm and has been very successful in pattern recognition and function estimation problems. For comparison, we consider a more realistic model would allow the noise variance itself to depend on the input variables.

  • PDF

Back-Propagation Algorithm through Omitting Redundant Learning (중복 학습 방지에 의한 역전파 학습 알고리듬)

  • 백준호;김유신;손경식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.9
    • /
    • pp.68-75
    • /
    • 1992
  • In this paper the back-propagation algorithm through omitting redundant learning has been proposed to improve learning speed. The proposed algorithm has been applied to XOR, Parity check and pattern recognition of hand-written numbers. The decrease of the number of patterns to be learned has been confirmed as learning proceeds even in early learning stage. The learning speed in pattern recognition of hand-written numbers is improved more than 2 times in various cases of hidden neuron numbers. It is observed that the improvement of learning speed becomes better as the number of patterns and the number of hidden numbers increase. The recognition rate of the proposed algorithm is nearly the same as that conventional method.

  • PDF

Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm

  • Li, Cheng;Yu, Ren;Yu, Wenmin;Wang, Tianshu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3283-3292
    • /
    • 2022
  • Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

A Backpropagation Learning Algorithm for pRAM Networks (pRAM회로망을 위한 역전파 학습 알고리즘)

  • 완재희;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.107-114
    • /
    • 1994
  • Hardware implementation of the on-chip learning artificial neural networks is important for real-time processing. A pRAM model is based on probabilistic firing of a biological neuron and can be implemented in the VLSI circuit with learning capability. We derive a backpropagation learning algorithm for the pRAM networks and present its circuit implementation with stochastic computation. The simulation results confirm the good convergence of the learning algorithm for the pRAM networks.

  • PDF

A Constructive Algorithm of Fuzzy Model for Nonlinear System Modeling (비선형 시스템 모델링을 위한 퍼지 모델 구성 알고리즘)

  • Choi, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.648-650
    • /
    • 1998
  • This paper proposes a constructive algorithm for generating the Takagi-Sugeno type fuzzy model through the sequential learning from training data set. The proposed algorithm has a two-stage learning scheme that performs both structure and parameter learning simultaneously. The structure learning constructs fuzzy model using two growth criteria to assign new fuzzy rules for given observation data. The parameter learning adjusts the parameters of existing fuzzy rules using the LMS rule. To evaluate the performance of the proposed fuzzy modeling approach, well-known benchmark is used in simulation and compares it with other modeling approaches.

  • PDF