• Title/Summary/Keyword: Algorithm Class

Search Result 1,186, Processing Time 0.03 seconds

Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm (다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화)

  • Park, Woo-Chang;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.

ITERATIVE ALGORITHM FOR COMPLETELY GENERALIZED QUASI-VARIATIONAL INCLUSIONS WITH FUZZY MAPPINGS IN HILBERT SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.451-463
    • /
    • 2010
  • In this paper, we introduce and study a class of completely generalized quasi-variational inclusions with fuzzy mappings. A new iterative algorithm for finding the approximate solutions and the convergence criteria of the iterative sequences generated by the algorithm are also given. These results of existence, algorithm and convergence generalize many known results.

A Stack Bit-by-Bit Algorithm for RFID Multi-Tag Identification (RFID 다중 태그 인식을 위한 스택 Bit-By-Bit 알고리즘)

  • Lee, Jae-Ku;Yoo, Dae-Suk;Choi, Seung-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.847-857
    • /
    • 2007
  • For the implementation of a RFID system, an anti-collision algorithm is required to identify multiple tags within the range of a RFID Reader. A Bit-by-Bit algorithm is defined by Auto ID Class 0. In this paper, we propose a SBBB(Stack Bit-by-Bit) algorithm. The SBBB algorithm save the collision position and makes a query using the saved data. SBBB improve the efficiency of collision resolution. We show the performance of the SBBB algorithm by simulation. The performance of the proposed algorithm is higher than that of BBB algorithm. Especially, the more each tag bit streams are the duplicate, the higher performance is.

Real Time Face Detection and Recognition using Rectangular Feature based Classifier and Class Matching Algorithm (사각형 특징 기반 분류기와 클래스 매칭을 이용한 실시간 얼굴 검출 및 인식)

  • Kim, Jong-Min;Kang, Myung-A
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • This paper proposes a classifier based on rectangular feature to detect face in real time. The goal is to realize a strong detection algorithm which satisfies both efficiency in calculation and detection performance. The proposed algorithm consists of the following three stages: Feature creation, classifier study and real time facial domain detection. Feature creation organizes a feature set with the proposed five rectangular features and calculates the feature values efficiently by using SAT (Summed-Area Tables). Classifier learning creates classifiers hierarchically by using the AdaBoost algorithm. In addition, it gets excellent detection performance by applying important face patterns repeatedly at the next level. Real time facial domain detection finds facial domains rapidly and efficiently through the classifier based on the rectangular feature that was created. Also, the recognition rate was improved by using the domain which detected a face domain as the input image and by using PCA and KNN algorithms and a Class to Class rather than the existing Point to Point technique.

Detection and Synthesis of Transition Parts of The Speech Signal

  • Kim, Moo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3C
    • /
    • pp.234-239
    • /
    • 2008
  • For the efficient coding and transmission, the speech signal can be classified into three distinctive classes: voiced, unvoiced, and transition classes. At low bit rate coding below 4 kbit/s, conventional sinusoidal transform coders synthesize speech of high quality for the purely voiced and unvoiced classes, whereas not for the transition class. The transition class including plosive sound and abrupt voiced-onset has the lack of periodicity, thus it is often classified and synthesized as the unvoiced class. In this paper, the efficient algorithm for the transition class detection is proposed, which demonstrates superior detection performance not only for clean speech but for noisy speech. For the detected transition frame, phase information is transmitted instead of magnitude information for speech synthesis. From the listening test, it was shown that the proposed algorithm produces better speech quality than the conventional one.

Joint latent class analysis for longitudinal data: an application on adolescent emotional well-being

  • Kim, Eun Ah;Chung, Hwan;Jeon, Saebom
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.241-254
    • /
    • 2020
  • This study proposes generalized models of joint latent class analysis (JLCA) for longitudinal data in two approaches, a JLCA with latent profile (JLCPA) and a JLCA with latent transition (JLTA). Our models reflect cross-sectional as well as longitudinal dependence among multiple latent classes and track multiple class-sequences over time. For the identifiability and meaningful inference, EM algorithm produces maximum-likelihood estimates under local independence assumptions. As an empirical analysis, we apply our models to track the joint patterns of adolescent depression and anxiety among US adolescents and show that both JLCPA and JLTA identify three adolescent emotional well-being subgroups. In addition, JLCPA classifies two representative profiles for these emotional well-being subgroups across time, and these profiles have different tendencies according to the parent-adolescent-relationship subgroups.

User Request Filtering Algorithm for QoS based on Class priority (등급 기반의 QoS 보장을 위한 서비스 요청 필터링 알고리즘)

  • Park, Hea-Sook;Baik, Doo-Kwon
    • The KIPS Transactions:PartA
    • /
    • v.10A no.5
    • /
    • pp.487-492
    • /
    • 2003
  • To satisfy the requirements for QoS of Users using multimedia content stream service, it is required to control mechanism for QoS based on class priority, URFA classifies the user by two classes (super class, base class) and controls the admission ratio of user's requests by user's class information. URFA increases the admission ratio class and utilization ratio of stream server resources.

ICAIM;An Improved CAIM Algorithm for Knowledge Discovery

  • Yaowapanee, Piriya;Pinngern, Ouen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2029-2032
    • /
    • 2004
  • The quantity of data were rapidly increased recently and caused the data overwhelming. This led to be difficult in searching the required data. The method of eliminating redundant data was needed. One of the efficient methods was Knowledge Discovery in Database (KDD). Generally data can be separate into 2 cases, continuous data and discrete data. This paper describes algorithm that transforms continuous attributes into discrete ones. We present an Improved Class Attribute Interdependence Maximization (ICAIM), which designed to work with supervised data, for discretized process. The algorithm does not require user to predefine the number of intervals. ICAIM improved CAIM by using significant test to determine which interval should be merged to one interval. Our goal is to generate a minimal number of discrete intervals and improve accuracy for classified class. We used iris plant dataset (IRIS) to test this algorithm compare with CAIM algorithm.

  • PDF

Feature Selection for Multi-Class Genre Classification using Gaussian Mixture Model (Gaussian Mixture Model을 이용한 다중 범주 분류를 위한 특징벡터 선택 알고리즘)

  • Moon, Sun-Kuk;Choi, Tack-Sung;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.965-974
    • /
    • 2007
  • In this paper, we proposed the feature selection algorithm for multi-class genre classification. In our proposed algorithm, we developed GMM separation score based on Gaussian mixture model for measuring separability between two genres. Additionally, we improved feature subset selection algorithm based on sequential forward selection for multi-class genre classification. Instead of setting criterion as entire genre separability measures, we set criterion as worst genre separability measure for each sequential selection step. In order to assess the performance proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigate classification performance by GMM classifier and k-NN classifier for selected features using conventional algorithm and proposed algorithm. Proposed algorithm showed improved performance in classification accuracy up to 10 percent for classification experiments of low dimension feature vector especially.

The Development of New dynamic WRR Algorithm for Wireless Sensor Networks (무선 센서망을 위한 새로운 동적 가중치 할당 알고리즘 개발)

  • Cho, Hae-Seong;Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.293-298
    • /
    • 2010
  • The key of USN(Ubiquitous Sensor Network) technology is low power wireless communication technology and proper resource allocation technology for efficient routing. The distinguished resource allocation method is needed for efficient routing in sensor network. To solve this problems, we propose an algorithm that can be adopted in USN with making up for weak points of PQ and WRR in this paper. The proposed algorithm produces the control discipline by the fuzzy theory to dynamically assign the weight of WRR scheduler with checking the Queue status of each class in sensor network. From simulation results, the proposed algorithm improves the packet loss rate of the EF class traffic to 6.5% by comparison with WRR scheduling method and that of the AF4 class traffic to 45% by comparison with PQ scheduling method.