• Title/Summary/Keyword: Alginate-collagen complex

Search Result 5, Processing Time 0.017 seconds

An Developmental Study of Artificial Skin Using the Alginate Dermal Substrate: Preliminary Report (알지네이트 진피지지체 인공피부 개발: 예비보고)

  • Park, Dae Hwan;Shin, Jeong Im
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • Alginate, a polymer of guluronic and mannuronic acid, is used as a scaffolding material in biomedical applications. The research was to produce highly-purified alginate from seaweeds and to evaluate the efficacy of alginate as dermal substrate. Our alginate purification method showed a production rate as high as 25%. The purified alginate contained little polyphenol contents and endotoxin, proteins. For study of wound healing, full thickness skin defects were made on the dorsal area of the animal models. And then alginate, fibroblast-growth-factor mixed alginate, alginate-collagen complex, vaseline gauze as control were applied on the wound, respectively, and were evaluated grossly and histopathologically. For biocompatibility test, alginate and alginate-collagen complex discs were implanted on the back of Sprague-Dawly rats. Four weeks after implantation, the animals were examined immunologically against alginate and collagen. Alginate and FGF-mixed alginate, alginate-collagen complex group showed statistically higher percentage of wound contraction and wound healing than control group(p<0.05). Alginate-collagen complex group and FGF-mixed alginate group showed statistically higher percentage of wound healing than alginate group. The experiment of biocompatibility and immunologic reaction against impanted alginate or collagen needs more investigation. Highly-purified alginate from seaweeds by our purification method, showed the effect of wound healing, and addition of FGF or collagen increases the alginate's wound healing effect. It shows the possibility of alginate as a dermal substrate.

The Wound Healing Effects of Alginate- crosslinked Collagen Dermal Substitute of Artificial Skin (콜라겐을 알긴산으로 교차 결합시킨 인공진피의 창상치유 효과)

  • Chang, Jae Hoon;Park, Dae Hwan;Shin, Jeong Im;Ahn, Ki Young;Song, Chul Hong
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • Alginate, which is isolated from brown seaweed, is a bioabsorbable long chain polysaccharides, ${\beta}$-D-mannuronic acid and ${\alpha}$-L-guluronic acid. The authors produced alginates and alginate-colllagen as a disc form. Then, to evaluate the efficacy of alginate and alginate-collagen complex as a wound healing material, three full-thickness skin defects of 2 cm in diameter were made at the back of the New Zealand white rabbits. Three groups of dressing materials-alginate, alginate-collagen complex and vaseline gauze as control group - were applied on the wound and the results were evaluated grossly and histopathologically. The authors compared gross findings of sizes of healed wound, wound epithelization and wound contraction by tracing the remaining wound area at 5th, 10th, 15th, 20th, 25th day after wound introduction, and wound biopsy was performed at 3rd, 7th, 14th, 21st day, respectively. Alginate and alginate-collagen complex showed statistically higher percentage of wound contraction and wound healing compared to control group(p<0.05). Alginate-collagen complex showed statistically higher percentage of wound contraction, epithelization and wound healing compared to alginate alone. In conclusion, the result suggests that alginate has a good effect of wound healing and that alginate-collagen complex is more effective in wound healing than alginate alone.

Preparation and Characterization of Alginate-Chitosan Microsphere for Controlled Delivery of Silver Sulfadiazine (설파디아진은의 방출제어를 위한 알지네이트-키토산 미립구의 제조 및 특성)

  • Cho, Ae-Ri
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.101-106
    • /
    • 2001
  • Alginate-chitosan (anion-cationic polymeric complex) was prepared to control the release rate of silver sulfadiazine (AgSD). Na-alginate (2%) solution containing AgSD was gelled in $CaCl_2$ solution. The gel beads formed were immediately encapsulated with chitosan (CS). The gel matrix and membrane were then reinforced with chondroitin-6-sulfate (Ch6S). Release rate of AgSD from the gel matrix was investigated by placing alginate beads in the sac of cellulose membrane simmered in HEPES-buffer solution. The concentration of AgSD released was analyzed by UV at 264 nm. Incorporation capacity of AgSD in Ca-alginate gel was more than 90%. Alginate-Ch6S-CS could control the release rate of AgSD. The amount of AgSD release was dependent on the AgSD loading dose. Incorporation of tripolyphosphate (polyanionic crosslinker) onto the alginate-Ch6S-CS bead increased the release rate of AgSD. Collagen-coating had no influence on the AgSD release rate. Alginate-Ch6S-CS beads with a sufficiently high AgSD encapsulation were capable of controlling the release of the drug over 10 days. In summary, alginate-Ch6S-CS beads could be used as a sustained delivery for AgSD and provide local targeting with low silver toxicity and patient discomfort.

  • PDF

Chitosan-alginate Gel Modified Poly (L-Lactic-co-ε-Caprolactone) (PLCL) as a Scaffold for Cartilage Tissue Engineering (변형된 키토산 알지네이트 겔 poly (L-Lactic-co-ε-Caprolactone) 지지체의 연골 조직 재생 평가)

  • Sutradhar, Bibek Chandra;Hwang, Yawon;Choi, Seokhwa;Kim, Gonhyung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • This study was designed in the fabricated poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold using chitosan-alginate hydrogel, which would be more suitable to maintain the biological and physiological functions continuing three dimensional spatial organizations for chondrocytes. As a scaffold, hydrogels alone is weak at endure complex loading within the body. In this study, we made cell hybrid scaffold constructs with poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold and hydrogels to make a three-dimensional composition of cells and extracellular matrix, which would be a mimic of a native cartilage. Using a particle leaching technique with NaCl, we fabricated a highly-elastic scaffold from PLCL with 85% porosity and $300-500{\mu}m$ pore size. A mixture of bovine chondrocytes and chitosan-alginate gel was seeded and compared with alginate as a control on the PLCL scaffold. The cell maturation, proliferation, extracellular matrix synthesis, glycosaminoglycans (sGAG) production and collagen type-II expressions were better in chondrocytes seeded in chitosan-alginate hydrogel than in alginate only. These results indicate that chondrocytes with chitosan-alginate gel on PLCL scaffolds provide an appropriate biomimetic environment for cell proliferation and matrix synthesis, which could successfully be used for cartilage repair and regeneration.

A 3D bioprinting system and plasma-surface modification to fabricate tissue engineering scaffolds (조직공학용 세포담체 제작을 위한 플라즈마-표면개질이 포함된 바이오프린팅 시스템)

  • Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.3-23
    • /
    • 2017
  • The achievement of tissue engineering can be highly depending on the capability to generate complicated, cell seeded three dimensional (3D) micro/nano-structures. So, various fabrication techniques that can be used to precisely design the architecture and topography of scaffolding materials will signify a key aspect of multi-functional tissue engineering. Previous methods for obtaining scaffolds based on top-down are often not satisfactory to produce complex micro/nano-structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. However, a bioprinting method can be used to design sophisticated 3D tissue scaffolds that can be engineered to mimic the tissue architecture using computer aided approach. Also, in recent, the method has been modified and optimized to fabricate scaffolds using various natural biopolymers (collagen, alginate, and chitosan etc.). Variation of the topological structure and polymer concentration allowed tailoring the physical and biological properties of the scaffolds. In this presentation, the 3D bioprinting supplemented with a newly designed plasma treatment for attaining highly bioactive and functional scaffolds for tissue engineering applications will be introduced. Moreover, various in vivo and in vitro results will show that the fabricated scaffolds can carry out their structural and biological functionality.

  • PDF