• Title/Summary/Keyword: Algebraic polynomial

Search Result 55, Processing Time 0.019 seconds

MORPHISMS OF VARIETIES OVER AMPLE FIELDS

  • Bary-Soroker, Lior;Geyer, Wulf-Dieter;Jarden, Moshe
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1023-1035
    • /
    • 2018
  • We strengthen a result of Michiel Kosters by proving the following theorems: (*) Let ${\phi}:W{\rightarrow}V$ be a finite surjective morphism of algebraic varieties over an ample field K. Suppose V has a simple K-rational point a such that $a{\not\in}{\phi}(W(K_{ins}))$. Then, card($V(K){\backslash}{\phi}(W(K))$ = card(K). (**) Let K be an infinite field of positive characteristic and let $f{\in}K[X]$ be a non-constant monic polynomial. Suppose all zeros of f in $\tilde{K}$ belong to $K_{ins}{\backslash}K$. Then, card(K \ f(K)) = card(K).

On the vibration of aligned carbon nanotube reinforced composite beams

  • Aydogdu, Metin
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.199-210
    • /
    • 2014
  • Carbon nanotubes have exceptional mechanical, thermal and electrical properties, and are considered for high performance structural and multifunctional composites. In the present study, the natural frequencies of aligned single walled carbon nanotube (CNT) reinforced composite beams are obtained using shear deformable composite beam theories. The Ritz method with algebraic polynomial displacement functions is used to solve the free vibration problem of composite beams. The Mori-Tanaka method is applied to find the composite beam mechanical properties. The continuity conditions are satisfied among the layers by modifying the displacement field. Results are found for different CNT diameters, length to thickness ratio of the composite beam and different boundary conditions. It is found that the use of smaller CNT diameter in the reinforcement element gives higher fundamental frequency for the composite beam.

A Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Lee, Sang-Ju;Joo, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.495-500
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity. Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

  • PDF

Free vibration of functionally graded thin elliptic plates with various edge supports

  • Pradhan, K.K.;Chakraverty, S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.337-354
    • /
    • 2015
  • In this article, free vibration of functionally graded (FG) elliptic plates subjected to various classical boundary conditions has been investigated. Literature review reveals no study has been performed based on functionally graded elliptic plates till date. The mechanical kinematic relations are considered based on classical plate theory. Rayleigh-Ritz technique is used to obtain the generalized eigenvalue problem. The material properties of the FG plate are assumed to vary along thickness direction of the constituents according to power-law form. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any edge support. The objective is to study the effect of geometric configurations and gradation of constituent volume fractions on the natural frequencies. New results for frequency parameters are incorporated after performing a test of convergence. A comparison study is carried out with existing literature for validation in special cases. Three-dimensional mode shapes for circular and elliptic FG plates are also presented with various boundary conditions at the edges.

A Study on Projection Properties of the 12-Run Plackett-Burman Design

  • Park, Dong-Kwon
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.707-718
    • /
    • 1999
  • Non-regular designs such as the Plackett-Burman(PB) design have traditionally been used for screening only main effects because of complex aliasing. But it was found that these designs could be used to estimate the 2-factor interactions as well as main effects through the hidden projection property. The goal of this paper is to propose the estimable model when projecting the 12-run PB design using the algebraic geometric method. The core of this method considers the design as a affine variety and the Grbner basis of the design ideal for this affine variety gives the estimable polynomial models. As the results of applying the 12-run PB design it is actually found that this design has the models not only with 2-factor interactions but with 3-factor. This design is the maximal fan in 4-factor projection.

  • PDF

Interaction in Model of Herbicide Combination Using Oxyfluorfen to Control Orchard Weeds (Oxyfluorfen을 주재(主材)로 한 과수원(果樹園) 제초제(除草劑) 조합처리(組合處理) 모형(模型)의 상호작용(相互作用) 효과(效果) 해석연구(解析硏究))

  • Guh, J.O.;Cho, Y.W.;Kwon, S.L.;Lee, W.Z.
    • Korean Journal of Weed Science
    • /
    • v.4 no.1
    • /
    • pp.88-95
    • /
    • 1984
  • The study was intended to analyze the interaction effects of paraquat and oxytluorfen as an orchard herbicide-mixture. Data were prepared from the former report of authors. The algebraic expression for the actions of paraquat and oxyfluorfen on the control percentages of peach orchard weeds, and their interactions were determined from the multiple regression polynomial and plotted in three-dimensional graphs. As a result of treatments by combination of paraquat and oxyfluorfen on the field which was dominated by perennial weeds, the most effective interactions were detected at combination rates of $245\;gHa^{-1}$ paraquat and $470-705\;gHa^{-1}$ oxyfluorfen. However, to develope the long-term weeding-efficacies, the combination rates of paraquat are expected to raise up to $500-700\;gHa^{-1}$, and oxyfluorfen to fit at lower limits of rates, respectively.

  • PDF

ON PETERSON'S OPEN PROBLEM AND REPRESENTATIONS OF THE GENERAL LINEAR GROUPS

  • Phuc, Dang Vo
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.643-702
    • /
    • 2021
  • Fix ℤ/2 is the prime field of two elements and write 𝒜2 for the mod 2 Steenrod algebra. Denote by GLd := GL(d, ℤ/2) the general linear group of rank d over ℤ/2 and by ${\mathfrak{P}}_d$ the polynomial algebra ℤ/2[x1, x2, …, xd] as a connected unstable 𝒜2-module on d generators of degree one. We study the Peterson "hit problem" of finding the minimal set of 𝒜2-generators for ${\mathfrak{P}}_d$. Equivalently, we need to determine a basis for the ℤ/2-vector space $$Q{\mathfrak{P}}_d:={\mathbb{Z}}/2{\otimes}_{\mathcal{A}_2}\;{\mathfrak{P}}_d{\sim_=}{\mathfrak{P}}_d/{\mathcal{A}}^+_2{\mathfrak{P}}_d$$ in each degree n ≥ 1. Note that this space is a representation of GLd over ℤ/2. The problem for d = 5 is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree n = r(2t - 1) + 2ts with r = d = 5, s = 8 and t an arbitrary non-negative integer. An application of this study to the cases t = 0 and t = 1 shows that the Singer algebraic transfer of rank 5 is an isomorphism in the bidegrees (5, 5 + (13.20 - 5)) and (5, 5 + (13.21 - 5)). Moreover, the result when t ≥ 2 was also discussed. Here, the Singer transfer of rank d is a ℤ/2-algebra homomorphism from GLd-coinvariants of certain subspaces of $Q{\mathfrak{P}}_d$ to the cohomology groups of the Steenrod algebra, $Ext^{d,d+*}_{\mathcal{A}_2}$ (ℤ/2, ℤ/2). It is one of the useful tools for studying these mysterious Ext groups.

Ciphertext policy attribute-based encryption supporting unbounded attribute space from R-LWE

  • Chen, Zehong;Zhang, Peng;Zhang, Fangguo;Huang, Jiwu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2292-2309
    • /
    • 2017
  • Ciphertext policy attribute-based encryption (CP-ABE) is a useful cryptographic technology for guaranteeing data confidentiality but also fine-grained access control. Typically, CP-ABE can be divided into two classes: small universe with polynomial attribute space and large universe with unbounded attribute space. Since the learning with errors over rings (R-LWE) assumption has characteristics of simple algebraic structure and simple calculations, based on R-LWE, we propose a small universe CP-ABE scheme to improve the efficiency of the scheme proposed by Zhang et al. (AsiaCCS 2012). On this basis, to achieve unbounded attribute space and improve the expression of attribute, we propose a large universe CP-ABE scheme with the help of a full-rank differences function. In this scheme, all polynomials in the R-LWE can be used as values of an attribute, and these values do not need to be enumerated at the setup phase. Different trapdoors are used to generate secret keys in the key generation and the security proof. Both proposed schemes are selectively secure in the standard model under R-LWE. Comparison with other schemes demonstrates that our schemes are simpler and more efficient. R-LWE can obtain greater efficiency, and unbounded attribute space means more flexibility, so our research is suitable in practices.

Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2004
  • Numerical solution to linear bending analysis of circular plates is obtained by the method of harmonic differential quadrature (HDQ). In the method of differential quadrature (DQ), partial space derivatives of a function appearing in a differential equation are approximated by means of a polynomial expressed as the weighted linear sum of the function values at a preselected grid of discrete points. The method of HDQ that was used in the paper proposes a very simple algebraic formula to determine the weighting coefficients required by differential quadrature approximation without restricting the choice of mesh grids. Applying this concept to the governing differential equation of circular plate gives a set of linear simultaneous equations. Bending moments, stresses values in radial and tangential directions and vertical deflections are found for two different types of load. In the present study, the axisymmetric bending behavior is considered. Both the clamped and the simply supported edges are considered as boundary conditions. The obtained results are compared with existing solutions available from analytical and other numerical results such as finite elements and finite differences methods. A comparison between the HDQ results and the finite difference solutions for one example plate problem is also made. The method presented gives accurate results and is computationally efficient.

Synthesis of Symmetric 1-D 5-neighborhood CA using Krylov Matrix (Krylov 행렬을 이용한 대칭 1차원 5-이웃 CA의 합성)

  • Cho, Sung-Jin;Kim, Han-Doo;Choi, Un-Sook;Kang, Sung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1105-1112
    • /
    • 2020
  • One-dimensional 3-neighborhood Cellular Automata (CA)-based pseudo-random number generators are widely applied in generating test patterns to evaluate system performance and generating key sequence generators in cryptographic systems. In this paper, in order to design a CA-based key sequence generator that can generate more complex and confusing sequences, we study a one-dimensional symmetric 5-neighborhood CA that expands to five neighbors affecting the state transition of each cell. In particular, we propose an n-cell one-dimensional symmetric 5-neighborhood CA synthesis algorithm using the algebraic method that uses the Krylov matrix and the one-dimensional 90/150 CA synthesis algorithm proposed by Cho et al. [6].