• 제목/요약/키워드: Algebraic Eigenvalue Problem

검색결과 40건 처리시간 0.021초

Free vibration of functionally graded thin elliptic plates with various edge supports

  • Pradhan, K.K.;Chakraverty, S.
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.337-354
    • /
    • 2015
  • In this article, free vibration of functionally graded (FG) elliptic plates subjected to various classical boundary conditions has been investigated. Literature review reveals no study has been performed based on functionally graded elliptic plates till date. The mechanical kinematic relations are considered based on classical plate theory. Rayleigh-Ritz technique is used to obtain the generalized eigenvalue problem. The material properties of the FG plate are assumed to vary along thickness direction of the constituents according to power-law form. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any edge support. The objective is to study the effect of geometric configurations and gradation of constituent volume fractions on the natural frequencies. New results for frequency parameters are incorporated after performing a test of convergence. A comparison study is carried out with existing literature for validation in special cases. Three-dimensional mode shapes for circular and elliptic FG plates are also presented with various boundary conditions at the edges.

Vibrations of truncated shallow and deep conical shells with non-uniform thickness

  • Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.29-46
    • /
    • 2015
  • A three-dimensional (3-D) method of analysis is presented for determining the natural frequencies of a truncated shallow and deep conical shell with linearly varying thickness along the meridional direction free at its top edge and clamped at its bottom edge. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components $u_r$, $u_{\theta}$, and $u_z$ in the radial, circumferential, and axial directions, respectively, are taken to be periodic in ${\theta}$ and in time, and algebraic polynomials in the r and z directions. Strain and kinetic energies of the truncated conical shell with variable thickness are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated. The frequencies from the present 3-D method are compared with those from other 3-D finite element method and 2-D shell theories.

비대칭 박벽 탄성 곡선보의 엄밀한 정적 요소강도행렬 (Exact Static Element Stiffness Matrix of Nonsymmetric Thin-walled Elastic Curved Beams)

  • 윤희택;김문영;김용기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.1165-1170
    • /
    • 2005
  • In order to perform the spatial buckling analysis of the curved beam element with nonsymmetric thin-walled cross section, exact static stiffness matrices are evaluated using equilibrium equations and force-deformation relations. Contrary to evaluation procedures of dynamic stiffness matrices, 14 displacement parameters are introduced when transforming the four order simultaneous differential equations to the first order differential equations and 2 displacement parameters among these displacements are integrated in advance. Thus non-homogeneous simultaneous differential equations are obtained with respect to the remaining 8 displacement parameters. For general solution of these equations, the method of undetermined parameters is applied and a generalized linear eigenvalue problem and a system of linear algebraic equations with complex matrices are solved with respect to 12 displacement parameters. Resultantly displacement functions are exactly derived and exact static stiffness matrices are determined using member force-displacement relations. The buckling loads are evaluated and compared with analytic solutions or results by ABAQUS's shell element.

  • PDF

박벽 곡선보의 엄밀한 탄성요소강도행렬 (Exact Elastic Element Stiffness Matrix of Thin-Walled Curved Beam)

  • 김남일;윤희택;이병주;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.385-392
    • /
    • 2002
  • Derivation procedures of exact elastic element stiffness matrix of thin-walled curved beams are rigorously presented for the static analysis. An exact elastic element stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The displacement and normal stress of the section are evaluated and compared with thin-walled straight and curved beam element or results of the analysis using shell elements for the thin-walled curved beam structure in order to demonstrate the validity of this study.

  • PDF

편심축하중을 받는 비대칭 박벽보의 엄밀한 동적강도행렬 (Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Beams Subjected to Eccentrically Axial Forces)

  • 김문영;윤희택
    • 한국강구조학회 논문집
    • /
    • 제13권6호
    • /
    • pp.703-713
    • /
    • 2001
  • 비대칭단면을 갖는 박벽 직선보의 3차원 자유진동해석을 수행하기 위하여 엄밀한 요소강도행렬을 유도한다. 단면이 균일한 비대칭 박벽 탄성보에 대하여 운동방정식, 힘-변위 관계식을 유도하고 엄밀한 동적강도행렬을 수치적으로 산정하는 방법을 제시한다. 14개의 변위파라미터를 도입하여 고차의 연립미분방정식을 1차 연립미분방정식으로 바꾸고, 비대칭행렬을 갖는 선형 고유치문제의 해를 복소수영역에서 구한다. 이를 이용하여 절점변위에 대한 처짐함수을 엄밀히 구하고, 재단력-변위 관계식을 이용하여 엄밀한 동적요소강도행렬을 산정한다. 본 방법의 타당성을 보이기 위하여 비대칭 박벽보의 고유진동수를 계산하고, 해석해, 혹은 3차 Hermitian 다항식을 사용한 보요소 및 ABAQUS를 사용한 유한요소 해석결과와 비교한다.

  • PDF

직각 쐐기와 응착접촉 하는 반무한 평판 내 전위: 제2부 - 보정 함수의 근사 및 응용 (Dislocation in Semi-infinite Half Plane Subject to Adhesive Complete Contact with Square Wedge: Part II - Approximation and Application of Corrective Functions)

  • 김형규
    • Tribology and Lubricants
    • /
    • 제38권3호
    • /
    • pp.84-92
    • /
    • 2022
  • In Part I, developed was a method to obtain the stress field due to an edge dislocation that locates in an elastic half plane beneath the contact edge of an elastically similar square wedge. Essential result was the corrective functions which incorporate a traction free condition of the free surfaces. In the sequel to Part I, features of the corrective functions, Fkij,(k = x, y;i,j = x,y) are investigated in this Part II at first. It is found that Fxxx(ŷ) = Fxyx(ŷ) where ŷ = y/η and η being the location of an edge dislocation on the y axis. When compared with the corrective functions derived for the case of an edge dislocation at x = ξ, analogy is found when the indices of y and x are exchanged with each other as can be readily expected. The corrective functions are curve fitted by using the scatter data generated using a numerical technique. The algebraic form for the curve fitting is designed as Fkij(ŷ) = $\frac{1}{\hat{y}^{1-{\lambda}}I+yp}$$\sum_{q=0}^{m}{\left}$$\left[A_q\left(\frac{\hat{y}}{1+\hat{y}} \right)^q \right]$ where λI=0.5445, the eigenvalue of the adhesive complete contact problem introduced in Part I. To investigate the exponent of Fkij, i.e.(1 - λI) and p, Log|Fkij|(ŷ)-Log|(ŷ)| is plotted and investigated. All the coefficients and powers in the algebraic form of the corrective functions are obtained using Mathematica. Method of analyzing a surface perpendicular crack emanated from the complete contact edge is explained as an application of the curve-fitted corrective functions.

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

Differential cubature method for buckling analysis of arbitrary quadrilateral thick plates

  • Wu, Lanhe;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • 제16권3호
    • /
    • pp.259-274
    • /
    • 2003
  • In this paper, a novel numerical solution technique, the differential cubature method is employed to study the buckling problems of thick plates with arbitrary quadrilateral planforms and non-uniform boundary constraints based on the first order shear deformation theory. By using this method, the governing differential equations at each discrete point are transformed into sets of linear homogeneous algebraic equations. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Detailed formulation and implementation of this method are presented. The buckling parameters are calculated through solving a standard eigenvalue problem by subspace iterative method. Convergence and comparison studies are carried out to verify the reliability and accuracy of the numerical solutions. The applicability, efficiency, and simplicity of the present method are demonstrated through solving several sample plate buckling problems with various mixed boundary constraints. It is shown that the differential cubature method yields comparable numerical solutions with 2.77-times less degrees of freedom than the differential quadrature element method and 2-times less degrees of freedom than the energy method. Due to the lack of published solutions for buckling of thick rectangular plates with mixed edge conditions, the present solutions may serve as benchmark values for further studies in the future.

두꺼운 완전 원추형 회전셸의 3차원적 진동해석 (Three-dimensional Vibration Analysis of Thick, Complete Conical Shells of Revolution)

  • 심현주;강재훈
    • 한국소음진동공학회논문집
    • /
    • 제15권4호
    • /
    • pp.457-464
    • /
    • 2005
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution, Unlike conventional shell theories, which are mathematically two-dimensional (2-D). the present method is based upon the 3-D dynamic equations of elasticity. Displacement components $u_{r},\;u_{z},\;and\;u_{\theta}$ in the radial, axial, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in , and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the conical shells are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of theconical shells. Novel numerical results are presented for thick, complete conical shells of revolution based upon the 3-D theory. Comparisons are also made between the frequencies from the present 3-D Ritz method and a 2-D thin shell theory.