• Title/Summary/Keyword: Algal Bloom

Search Result 325, Processing Time 0.029 seconds

Analysis of Algal Bloom Occurrence Characteristics Namyang Lake using Sentinel-2 MSI (Sentinel-2 MSI를 활용한 남양 간척담수호의 조류발생 특성 분석)

  • Wonjin Jang;Jinuk Kim;Jiwan Lee;Yongeun Park;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.56-56
    • /
    • 2023
  • 남양호는 농업용수 공급을 위해 건설된 하구 담수호로 과도한 영양물질 축적으로 인해 매년 여름 녹조류가 번성한다. 따라서 본 연구에서는 조류발생 특성을 분석하고자 식물성 플랑크톤 및 관련 분해 산물에 의해 고유 광학특성을 가지고 있는 Chlorophyll-a(Chl-a)의 추정을 통한 녹조 발생을 파악하고자 Sentinel-2 Multi Spectral Image(MSI)의 원격 반사율 광학 스펙트럼을 사용하였다. Chl-a 추정알고리즘 개발을 위하여 Sentinel-2 A, B의 교차 방문주기인 5일 간격에 맞추어 현장수질자료(2022년: 27회 2023년: 27회)를 측정하였다. Chl-a 농도는 EXO-YSI를이용하여 측정하였으며 해당기간동안 9.4 ~ 127.1 mg/L의 범위를 보였으며, Sentine-2 자료는 A, B자료에서 B1(443 nm) ~ B8A(865 nm)파장의 값을 기상조건(구름, 안개, 강수)을 고려하여 현장수질측정 위치에서 반사도를 추출하였다. 입력자료는 대기 및 방사영향을 고려해 반사도 간의 비율자료와 선행연구에서 활용된 반사도를 활용하였으며 알고리즘은 다중선형회귀분석(Multi Linear Regression Model)과 Random Forest를 활용하였다. MLR의 경우 결정계수(R2)가 학습 및 검증에서 각각 0.68, 0.59의 성능을 보였으며, RF의 경우 각각 0.94, 0.85의 성능을 보였다. 해당알고리즘으로 생성된 Chl-a 시공간농도 자료는 담수호내 조류발생 특성을 분석하고 효율적 조류관리 및 대처에 활용될 것으로 판단된다.

  • PDF

Five phototrophic Scrippsiella species lacking mixotrophic ability and the extended prey spectrum of Scrippsiella acuminata (Thoracosphaerales, Dinophyceae)

  • Ji Hyun You;Jin Hee Ok;Hee Chang Kang;Sang Ah Park;Se Hee Eom;Hae Jin Jeong
    • ALGAE
    • /
    • v.38 no.2
    • /
    • pp.111-126
    • /
    • 2023
  • Mixotrophic dinoflagellates act as primary producers, prey, and predators in marine planktonic food webs, whereas exclusively autotrophic dinoflagellates are primary producers and prey. Species of the dinoflagellate genus Scrippsiella are commonly found in marine ecosystems and sometimes cause harmful red tides. Among the 28 formally described Scrippsiella species, S. acuminata has been found to be mixotrophic and two unidentified species have been found to be mixotrophic. To determine whether the other species in this genus are similarly mixotrophic, the mixotrophic ability of S. donghaiensis SDGJ1703, S. lachrymosa SLBS1703, S. masanensis SSMS0908, S. plana SSSH1009A, and S. ramonii VGO1053 was explored using 15 potential prey items, including 2-㎛ fluorescently labeled microspheres (FLM) and heterotrophic bacteria (FLB), the cyanobacterium Synechococcus sp., and various microalgal prey species. The ability of S. acuminata to feed on FLM and FLB was also investigated. We found that S. donghaiensis, S. lachrymosa, S. masanensis, S. plana, and S. ramonii did not feed on any potential prey tested in this study, indicating a lack of mixotrophy. However, S. acuminata fed on both FLM and FLB, confirming its mixotrophic ability. These results lowered the proportion of mixotrophic species relative to the total number of tested Scrippsiella species for mixotrophy from 100% to 29-38%. Owing to its mixotrophic ability, S. acuminata occupies an ecological niche that is distinct from that of S. donghaiensis, S. lachrymosa, S. masanensis, S. plana, and S. ramonii.

Data-driven Model Prediction of Harmful Cyanobacterial Blooms in the Nakdong River in Response to Increased Temperatures Under Climate Change Scenarios (기후변화 시나리오의 기온상승에 따른 낙동강 남세균 발생 예측을 위한 데이터 기반 모델 시뮬레이션)

  • Gayeon Jang;Minkyoung Jo;Jayun Kim;Sangjun Kim;Himchan Park;Joonhong Park
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.121-129
    • /
    • 2024
  • Harmful cyanobacterial blooms (HCBs) are caused by the rapid proliferation of cyanobacteria and are believed to be exacerbated by climate change. However, the extent to which HCBs will be stimulated in the future due to increased temperature remains uncertain. This study aims to predict the future occurrence of cyanobacteria in the Nakdong River, which has the highest incidence of HCBs in South Korea, based on temperature rise scenarios. Representative Concentration Pathways (RCPs) were used as the basis for these scenarios. Data-driven model simulations were conducted, and out of the four machine learning techniques tested (multiple linear regression, support vector regressor, decision tree, and random forest), the random forest model was selected for its relatively high prediction accuracy. The random forest model was used to predict the occurrence of cyanobacteria. The results of boxplot and time-series analyses showed that under the worst-case scenario (RCP8.5 (2100)), where temperature increases significantly, cyanobacterial abundance across all study areas was greatly stimulated. The study also found that the frequencies of HCB occurrences exceeding certain thresholds (100,000 and 1,000,000 cells/mL) increased under both the best-case scenario (RCP2.6 (2050)) and worst-case scenario (RCP8.5 (2100)). These findings suggest that the frequency of HCB occurrences surpassing a certain threshold level can serve as a useful diagnostic indicator of vulnerability to temperature increases caused by climate change. Additionally, this study highlights that water bodies currently susceptible to HCBs are likely to become even more vulnerable with climate change compared to those that are currently less susceptible.

Formation and Deformation of the Fluid Mud Layer on Riverbeds under the Influence of the Hydrological Property and Organic Matter Composition (하천 수문 특성과 유기물 성상 변화에 따른 하상 유동상 퇴적물 거동 연구)

  • Trung Tin Huynh;Jin Hur;Byung Joon Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • This study employed field measurements and biogeochemical analysis to examine the effects of seasonal conditions (e.g., temperature and precipitation) and human intervention (e.g., dam or weir construction) on the chemical composition of dissolved organic matter, flocculation kinetics of suspended particulate matter, and formation of the fluid mud layer on riverbeds. The results indicated that a water environment with a substantial amount of biopolymers offered favorable conditions for flocculation kinetics during an algal bloom period in summer; a thick fluid mud layer was found to be predominated with cohesive materials during this period. However, after high rainfall, a substantial influx of terrigenous humic substances led to enhanced stabilization of the particulate matter, thereby decreasing flocculation and deposition, and the reduced biopolymer composition served to weaken the erosion resistance of the fluid mud on the riverbed. Moreover, a high-turbulence condition disaggregated the flocs and the fluid mud layer and resuspended the suspended particulate matter in the water column. This study demonstrates the mutual relationship that exists between biogeochemistry, flocculation kinetics, and the formation of the fluid mud layer on the riverine area during different seasons and under varying hydrological conditions. These findings are expected to eventually help inform the more optimal management of water resources, which is an urgent task in the face of anthropogenic stressors and climate change.

Estimation of bioluminescence intensity of the dinoflagellates Noctiluca scintillans, Polykrikos kofoidii, and Alexandrium mediterraneum populations in Korean waters using cell abundance and water temperature

  • Sang Ah Park;Hae Jin Jeong;Jin Hee Ok;Hee Chang Kang;Ji Hyun You;Se Hee Eom;Yeong Du Yoo;Moo Joon Lee
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Many dinoflagellates produce bioluminescence. To estimate the intensity of bioluminescence produced by populations of the heterotrophic dinoflagellates Noctiluca scintillans and Polykrikos kofoidii and autotrophic dinoflagellate Alexandrium mediterraneum in Korean waters, we measured cellular bioluminescence intensity as a function of water temperature and calculated population bioluminescence intensity with cell abundances and water temperature. The mean 200-second-integrated bioluminescence intensity per cell (BLcell) of N. scintillans satiated with the chlorophyte Dunaliella salina decreased continuously with increasing water temperature from 5 to 25℃. However, the BLcell of P. kofoidii satiated with the mixotrophic dinoflagellate Alexandrium minutum continuously increased from 5 to 15℃ but decreased at temperatures exceeding this (to 30℃). Similarly, the BLcell of A. mediterraneum continuously increased from 10 to 20℃ but decreased between 20 and 30℃. The difference between highest and lowest BLcell of N. scintillans, P. kofoidii, and A. mediterraneum at the tested water temperatures was 3.5, 11.8, and 21.0 times, respectively, indicating that water temperature clearly affected BLcell. The highest estimated population bioluminescence intensity (BLpopul) of N. scintillans in Korean waters in 1998-2022 was 4.22 × 1013 relative light unit per liter (RLU L-1), which was 1,850 and 554,000 times greater than that of P. kofoidii and A. mediterraneum, respectively. This indicates that N. scintillans populations produced much brighter bioluminescence in Korean waters than the populations of P. kofoidii or A. mediterraneum.

Combined Effects of Filter-feeding Bivalve and Zooplankton on the Growth Inhibition of Cyanobacterium Microcystis aeruginosa (남세균 제어를 위한 동물플랑크톤(Daphnia magna)과 패류(Unio douglasiae)의 단독 및 혼합적용)

  • Kim, Nan-Young;Park, Myung-Hwan;Hwang, Su-Ok;Kim, Baik-Ho;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • Single - and combined effects of a domestic freshwater bivalve Unio douglasiae (7.6~8.6 cm in shell length) and zooplankton Daphnia magna (1~2 mm in body size) were examined to understand whether they inhibit the growth of harmful cyanobacterial bloom (i.e. Microcystis aeruginosa) in a eutrophic lake. The experiments were triplicated with twelve glass aquaria (40 L in volume); three aquaria without mussel and zooplankton, served as a control, three zooplankton aquaria (Z, density=40 indiv. $L^{-1}$), three mussel aquaria (M, density=0.5 indiv. $L^{-1}$), and three mussel plus zooplankton aquarium (ZM, density=40 indiv.Z $L^{-1}$ plus 0.5 indiv.M/L), respectively. Algal growth inhibition (%) calculated as a difference in the concentration of chlorophyll-a (Chl-a) before and after treatment. Chl-a in all aquaria decreased with the time, while a greatest algal inhibition was seen in the ZM aquaria. After 24 hrs of incubation, Chl-a concentration at the mid-depth (ca. 15 cm) in ZM aquaria reduced by 90.8% of the control, while 63.2% and 79.8% in Z and M aquaria, respectively. Interestingly, during the same period, the surface Chl-a was diminished by 51.9% and 65.4% relative to the control in Z and ZM aquaria, while 27.4% of initial concentration decreased in M aquarium, respectively. These results suggest that 1) this domestic freshwater filter-feeding bivalve plays a significant role in the control of cyanobacterial bloom (M. aeruginosa), and 2) the combination with zooplankton and mussel has a synergistic effect to diminish them, compared to the single treatment of zooplankton and mussel.

Dynamics of Water Environmental Factors and Phytoplankton in Taechong Reservoir (대청호에서 수환경 요인과 식물플랑크톤의 변동)

  • 신재기;조경제;오인혜
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.529-541
    • /
    • 1999
  • In order to elucidate characteristics of water quality, investigation of monthly dynamics of environmental factors and algal populations at major four stations of the mid and lower part in Taechong Reservoir was performed from June 1998 to June 1999. Water temperature, DO and pH were ranged 5.3~27.7$^{\circ}C$, 6.2~13.8 mgO$_2$/1 and 6.4~9.5, respectively. Those were varying as the season changes. Among inorganic nitrogen nutrients, NH$_4$was ranged from 5.5% to 7.2% of NO$_3$and NO$_3$was almost same through the seasons except summer in which it was low. SRP and SRSi were increased in summer when the blue-green algae became dominant. Those were decreased as the cell density of diatom increased when the water temperature dropped. Therefore SRSi was considered to be another important nutrient factor contributing to the increment of biomass of freshwater algae as well as SRP. Average chi-$\alpha$ concentration ranged from s to 12 $\mu$g/1 and in the lower part or the reservoir, the lowest was found. Moreover, there were remarkable increment in summer when TN/TP ratio were decreasing from relationships between TN/TP ratio and chi-$\alpha$ concentration. Annual mean ratio of TN/TP ratio was relatively high as the value was 110, which was relatively high, and it showed that P is the dominant factor in the algal growth. The dynamics of phytoplankton were simply dominated by a few species seasonally. In summer, blue -green algae such as Anabaena, Microcystis and Oscillatoria were dominant and algal bloom of blue -green began from early summer, sustained to late autumn. The average standing crops of A. spiroides v. crassa, M. aeruginosa and O. limosa were ranged 0.3~2.0$\times$10$^4$cells/ml, 6.4$\times$10$^2$~1.0$\times$10$^4$cells/ml and 4.6$\times$10$^3$~1.6$\times$10$^4$cells/ml, respectively. In winter, diatom Stephanodiscus was considered to be an important species whose average standing crops of Stephunodiscus was 4.9$\times$10$^2$cells/ml from November to April of the next year and the highest was 1.3$\times$10$^3$cells/ml in January.

  • PDF

Variation in Harmful Algal Blooms in Korean coastal waters since 1970 (1970년대 이후 한국 연안의 적조 발생 변화)

  • Lim, Weol-Ae;Go, Woo-Jin;Kim, Kyoung-Yeon;Park, Jong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.523-530
    • /
    • 2020
  • Based on the results of harmful algal blooms (HABs) monitoring by the National Institute of Fisheries Science and local governments, the effects of changes in the marine environment on HABs are described. Since the beginning of HABs monitoring in 1972, they continued to increase from the 1980s to the 1990s. After the largest number of HAB incidents (109) in 1998; the trend declined until the 2010s. Most HABs in the 1970s were caused by diatoms. In the 1980s, coastal dinoflagellates caused HABs; Cochlodinium polykrikoides blooms have been occurring continuously since 1993. There are three HAB species that cause damage to fisheries in Korea. The high-density bloom of Karenia mikimotoi caused mass mortality in shellfish in Jinhae Bay in 1981. Karenia sp. blooms occurring around Tongyeong in 1992 killed aquaculture fish. Since the occurrence of the largest fisheries damage of KRW 76.6 billion in 1995 caused by C. polykrikoides blooms, they have been occurring continuously. The concentration of nutrients in coastal waters was the highest in the 1980s and has declined since the mid-1990s. This reduction in nutrient concentration is a good explanation for the decreasing number of HABs. Since 2016, a summer high water temperature of 30℃ or more has appeared, and the range and scale of C. polykrikoides blooms have been greatly reduced. In 2016, K. mikimotoi blooms occurred around Wando, Jangheung and Goheung and small scale blooms of C. polykrikoides occurred around Yeosu. There were no C. polykrikoides blooms in 2017; however, Alexandrium affine blooms occurred from Yeosu to Tongyeong. There was a small-scale blooms of C. polykrikoides in 2018 compared to those in the previous years. Our results show that reduction in nutrients and the high water temperature owing to climate change are a good explanation for variation in HABs in Korean coastal waters.

Influences of Nutrient Deficiency on the Phytoplankton Community in Pal'tang Reservoir (몇가지 영양염 결핍이 팔당댐의 식물플랑크톤군집에 미치는 영향)

  • Kim, Baik-Ho;Choi, Ji-Young;Hwang, Soon-Jin;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.47-56
    • /
    • 2004
  • To understand the effect of nutrient deficiency on the plankton community in three stations with different water qualities in Pal'tang Reservoir, Korea, phytoplanktons(> 10 ${\mu}m$) were cultured in nutrient enrichment Allen's media (AM) and nutrient-deficient Allen's media. A distinct shift in the species composition and biomass of phytoplankton (as chlorophyll- a) showed in all treatments. In particular, it was very interesting that the new development of cyanobacterium Microcystis aeruginosa occurred by the Fe-deficient AM. Except for Si, a community growth (as chlorophyll- a) was inhibited in all nutrient deficient treatments. Species diversity after nutrient deficiency was changed to below 2.0; slightly increased in N and P-deficiency, while decreased in Si and Fe, respectively. As suggested, dominance was entirely opposite to diversity. Therefore, the nutrient deficient effectively induced the succession of species and biomass, phytoplankton community, suggesting a possibility as a reliable tool to control the algal bloom in eutrophic lakes and reservoirs.

Effect of Cultivation Activity in Daecheong Lake Flood Control Site on Water Quality (대청호 홍수조절지 내 경작활동이 수질에 미치는 영향)

  • Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.49-58
    • /
    • 2020
  • The excessive use of fertilizer and compost in agricultural land increases the accumulation of nutrients in soil. The surplus nutrients in soil transported through surface and sub-surface flow can lead to water pollution problems and algal bloom. Moreover, nutrient accumulation and continuous crop cultivation changes the physical structure of the soil, which increases the potential of nutrient. The cultivation in the Daecheong Lake reservoir area may have a direct effect on the lake's water quality due to leaching and releasing of nutrients when water level rises. This research was carried out to analyze the physical and chemical properties of soil in the agricultural areas surrounding Daecheong Dam reservoir to provide basic data available for the establishment of Daecheong Lake water quality management measures. The soil of the Daecheong Lake reservoir was classified as sandy Loam, where surplus nutrients can be transported. Chemical compositions in the soil were found to be significantly affected by use of different fertilizer amounts. Nutrient outflow occurred during spring rainfall events from the rice paddy fields, whereas excess nutrients from summer to fall seasons originated from dry paddy fields. Nutrient outflow from dry paddy fields is mainly from sub-surface flow. Organic agricultural wastes from agricultural land and excessive vegetation inside the river was also evaluated to contribute to the increase in organic matter and nutrients of the river. The results can be used to select the priority management area designation and management techniques in the Daecheong Lake for water quality improvement.