• Title/Summary/Keyword: Algae Removal

Search Result 211, Processing Time 0.027 seconds

Study on Algae and Turbidity Removal by Floating-media and Sand Filter (부상여재 및 모래 여과장치에 의한 조류와 탁도 제거에 관한 연구)

  • Kwon, Dae-Young;Kwon, Jae-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.659-668
    • /
    • 2012
  • In Korea, almost every water treatment plant suffers from seasonal problem of algae and turbidity which result from eutrophication and heavy rainfall. To relieve this problem, experimental investigation was performed to study the applicability of a floating-media and sand filter to preliminary water treatment in terms of algae and turbidity removal. Experimental results using pure-cultured algae influent showed that the shape of algae species as well as filtration velocity affects the removal efficiency. From the experiments using natural river water, it was concluded that algae removal is more sensitive to floating-media depth but turbidity more sensitive to sand depth. As the filtration velocity increased, the removal of turbidity decreased but that of algae was not affected. The floating-media and sand filter removed more than 30 % of TP, TN, turbidity, Chl-a and CODcr, and less than 20 % of DOC and $UV_{254}$.

Determination of Optimum Coagulant Dosage for Effective Water Treatement of Chyinyang Lake - The Effect of Coagulant Dosing on Removal of Algae- (진양호소수의 효과적인 정수처리를 위한 최적응집제 주입량 결정 -조류제거를 위한 응집제 주입효과-)

  • 이원규;조주식;이홍재;임영성;허종수
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.625-631
    • /
    • 1999
  • This study was performed to determine the optimum coagulant dosing for effective treatment of raw water in Chinyang lake. Removal rates of algae and characteristics of the water according to coagulants dosage were investigated by treatment with Microcystis aeruginosa, which is a kind of blue-green algae, to the raw water below 5NTU. The coagulants dosage for maximum removal rate of algae were 30 mg/$\ell$ of Alum, 30 mg/$\ell$ of PAC and 10 mg/$\ell$ of PACS, respectively. The removal rate of algae in 30 mg/$\ell$ of PAC was highest as 85% compared with the other treatments. At the point of maximum removal rate of algae, the removal rates of turbidity were 34%, 66% and 22% in Alum, PAC and PACS, respectively. Residual Al was decreased depend upon decreasing turtidity in water by treatment of Alum or PAC, but decreased depend upon increasing turbidity in water by treatment of PACS. The removal rate of ${Mn}_{2+}$ in water was high in the order of Alum, PAC and PACS treatment. And ${Fe}_{2+}$ in water was not changed by treatemnt of these coagulants. Particle numbers distributions according to the particle size of suspended solids that were not precipitated at 8 min. of settling time after treatment of coagulants dosage for the maximum removal rate of algae were investigated. Most of the particle sizes were below 30 $\mu$m and particle numbers distributions below 10 $\mu$m were 64%, 56% and 66% by treatment of Alum, PAC and PACS, respectively. Zeta potential was in the range of -6.1~-9.7 mV at optimum coagulants dosage for algae removal.

  • PDF

A Study on Portable Green-algae Remover Device based on Arduino and OpenCV using Do Sensor and Raspberry Pi Camera (DO 센서와 라즈베리파이 카메라를 활용한 아두이노와 OpenCV기반의 이동식 녹조제거장치에 관한 연구)

  • Kim, Min-Seop;Kim, Ye-Ji;Im, Ye-Eun;Hwang, You-Seong;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.679-686
    • /
    • 2022
  • In this paper, we implemented an algae removal device that recognizes and removes algae existing in water using Raspberry Pi camera and DO (Dissolved Oxygen) sensor. The Raspberry Pi board recognizes the color of green algae by converting the RGB values obtained from the camera into HSV. Through this, the location of the algae is identified and when the amount of dissolved oxygen's decrease at the location is more than the reference value using the DO sensor, the algae removal device is driven to spray the algae removal solution. Raspberry Pi's camera uses OpenCV, and the motor movement is controlled according to the output value of the DO sensor and the result of the camera's green algae recognition. Algae recognition and spraying of algae removal solution were implemented through Arduino and Raspberry Pi, and the feasibility of the proposed portable algae removal device was verified through experiments.

A Study on the Removal of Algae by Coagulation and Sedimentation in the Rew Water of the Nakdong River (낙동강 원수내 조류의 응집 침전에 의한 제거에 관한 연구)

  • 이진희;김영주
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.113-117
    • /
    • 2001
  • This study was conducted to investigate the effect of the prechlorination on algal removal by application of a varying amount of different coagulants, such as LAC, PAC, PACS following the process of coagulation and sedimentation of algae in the Nakdong River. The samples used as a source for the raw water of the Nakdong River were collected from the D Water Purification Plant in Taegu city. With the application of the process of prechlorination, the removal rate of the algae was increased from 10~25% for Synedra spp., 20~35% for diatoms and 4~17% for turbidity. Generally, the removal rate of the algae was increased with the increase of the concentration of the coagulants. The PAC and PACS showed 5% higher removal rate for turbidity as compared to the LAS. On the hand, LAS showed 12% higher removal rate for Synedra spp. as compared to the PAC and PACS. The variations in the removal rate of diatoms with the change of coagulant were not significant. In conclusion, the application of LAS, polymeric coagulant and chlorination for at least 20 minutes could be considered as a reliable treatment process for the removal of source water containing a variety of algae.

  • PDF

Pollutant Removal Efficiency in Oxidation Pond with Filamentous Algae Mat (사상성 조류매트 산화지의 수질정화효율)

  • Choi, Sun-Hwa;Jang, Jeong-Ryeol;Ahn, Yeul
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.655-660
    • /
    • 2005
  • This study was carried out to evaluate of water purification in oxidation pond with filamentous algae mat. It is the water treatment process in the small rural streams to remove the organic materials and nutrients. We used the filamentous algae mat(FAM) which selectively predominate the filamentous algae to prevent the additional contamination by algae outflow. The removal efficiencies of COD, SS, T-N and T-P in Oxidation Pond with Filamentous Algae Mat were -2.5%, 84.7%, 63.9% and 89.2%, respectively. The removal efficiencies of T-N and T-P which are nutrients index were high. Results of this study would help us to determine the possibility of using the water treatment on the contaminated small rural streams.

  • PDF

Rapid Removal of Green Algae by the Magnetic Method

  • Lee, Huk-Hee;Suh, Hyung-Sock;Chang, Tae-Sun
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.151-156
    • /
    • 2012
  • This research described the magnetic method for the rapid removal of green algae in water. We modified the pH, cation concentration, and magnetic powder concentration to discover the best removal performance. In order to rapidly remove green algae from water, we added magnetic powder and chitosan into algae water to make a magnetic substance and this was extracted by a strong neodymium magnet. The optimized conditions were pH of 6.5-7.5, chitosan concentration of 10 mg/L, and magnetite powder concentration of less than 0.05%. A higher removing rate was observed when a higher amount of magnetite or chitosan was used, but the total amounts of phosphorus or nitrogen were not decreased.

Adsorption-DAF Hybrid Process for the Simultaneous Removal of Algae and Organic Compounds (조류와 유기화합물의 동시제거를 위한 흡착 - DAF 복합공정)

  • Lee, Jae-Wook;Kwak, Dong-Heui;Choi, Seung-Phil;Jung, Heung-Joe
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.208-214
    • /
    • 2004
  • Dissolved air flotation (DAF) is an effective solid/liquid separation process for low density floc particles such as algal, color-alum and clay-alum flocs produced from low turbidity water. The removal of taste and odor-causing organics (2-mthylisoboneol and geosmin) originating from algae in drinking water is a local and worldwide concern. Although DAF has been effectively applied for the removal of suspended solid, its application for the treatment of dissolved organic carbon is very limited. In this study, a new hybrid system consisting of adsorption and DAF processes was introduced for the simultaneous removal of algae and taste and odor-causing organics. Powdered activated carbon (PAC) was used as an adsorbent. In this proposed system, the major concern of eliminating the spent PAC from the system was also addressed. It was found that zeta potential of algae and PAC was increased with coagulant dosage, and the removal efficiency in DAF was also enhanced up to 90~95% under the given experimental conditions. Based on this study, the hybrid process was found to be a promising technology for the simultaneous removal of algae and dissolved organic pollutants.

Evaluation of Operation Parameters for the Removal of Algae by Electro-Coagulation (수계 내 조류 제거를 위한 전기응집 운전 특성 평가)

  • Jeong, Kwon;Kim, Do-Gun;Kim, Seog-Ku;Kim, Weon-Jae;Ko, Seok-Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.94-102
    • /
    • 2015
  • Electro-coagulation experiments were conducted with aluminum (Al) or iron (Fe) electrode in order to determine the optimal electrode material and operation conditions for algae removal. Al electrode showed higher removal rate of algae than Fe electrode because Al flocs have positive surface charges which electrostatically attract algae species having negative surface charges. Removal rate of algae and total phosphorous (T-P) was increased as current density and electrode area increases. It was also found that initial pH with neutral range was optimum for T-P removal by electro-coagulation. Bench-scale continuous flow experiments consisted of electro-coagulation reactor, agitation tank and settling tank were conducted. In electro-coagulation reactor, a large fraction of Al flocs were distributed to scum layer, due to the gas bubbles generated by electrolysis reaction. In agitation tank, most of Al flocs were settled and the optimal mixing intensity was found to be 50 rpm to achieve good settleability. The removal rate of algae was about 90-95%. Additionally, the removal rate of the T-P and COD was observed to be $73.8{\pm}8.0%$ and $75.0{\pm}3.8%$, respectively. Meanwhile, the removal rate of total nitrogen (T-N) was relatively low at only 24%.

Effect of MLSS and Micro-algae on Nitrification based Photosynthetic Oxygen (MLSS와 미세조류가 광합성 산소기반 질산화에 미치는 영향)

  • Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.508-514
    • /
    • 2017
  • Water-bloom and red tide due to eutrophication have been overgrown and have caused various environmental problems. Recently, however, research on bid-diesel that can utilize algae as an energy source has been actively carried out. In particular, many studies variously have been conducted to utilize algal photosynthesis oxygen as a supply method for reducing the energy by an air blower in MWTP. In this study, a lab scale algae-nitrification reactor was operated to replace the oxygen required for nitrogen removal and the operation period was largely divided into three sections. In the first section, ammonia nitrogen removal efficiency was 24 ~ 38% according to the MLSS (Mixed Liquer Suspended Solid) concentration. In the second section, ammonia nitrogen removal efficiency was 38 ~ 50% according to the micro-algae concentration and in the last section ammonia nitrogen removal efficiency was 61 ~ 80% according to HRT (Hydraulic Retention Time). As a result, as the MLSS decreased and algae biomass increased, the ammonia nitrogen removal efficiency tended to increase, but the effect of Algae biomass was greater than that of MLSS.

Photocatalytic Degradation of Algae and its By-product using Rotating Photocatalytic Oxidation Disk Reactor

  • Son, Hee-Jong;Jung, Chul-Woo;Bae, Sang-Dae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.170-173
    • /
    • 2009
  • This study examined the special technique of photocatalytic degradation (RPODisk) for removal of taste and odor causing materials, algae, and algal toxin. The RPODisk was effective for removal of these troublesome contaminants. It outperformed the fixed media and the UV irradiation for geosmin removal. The RPODisk performance was comparable to the combination of the UV irradiation with TiO2. The RPODisk performance was affected by the rotating speed. The faster the speed was, the better the performance. The RPODisk was also effective for removal of algae and algal toxin. The algal activity reduced by 80% after 30 mins of the treatment. More toxic microcystin (MC)-LR was more difficult to remove than MC-RR. The times for 50% removal were 23.7 mins for MC-LR and 14.1 mins for MC-RR. Almost 100 mins of the contact time was required to completely remove MC-LR at the rotating speed of 260 rpm.