DOI QR코드

DOI QR Code

Rapid Removal of Green Algae by the Magnetic Method

  • Lee, Huk-Hee (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Suh, Hyung-Sock (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Chang, Tae-Sun (Environment & Resources Research Center, Korea Research Institute of Chemical Technology)
  • Received : 2012.04.25
  • Accepted : 2012.08.16
  • Published : 2012.09.30

Abstract

This research described the magnetic method for the rapid removal of green algae in water. We modified the pH, cation concentration, and magnetic powder concentration to discover the best removal performance. In order to rapidly remove green algae from water, we added magnetic powder and chitosan into algae water to make a magnetic substance and this was extracted by a strong neodymium magnet. The optimized conditions were pH of 6.5-7.5, chitosan concentration of 10 mg/L, and magnetite powder concentration of less than 0.05%. A higher removing rate was observed when a higher amount of magnetite or chitosan was used, but the total amounts of phosphorus or nitrogen were not decreased.

Keywords

References

  1. Heng L, Jun N, Wen-Jie H, Guibai L. Algae removal by ultrasonic irradiation-coagulation. Desalination 2009;239:191-197. https://doi.org/10.1016/j.desal.2007.12.035
  2. Shen M, Xu J, Chiang MW, Au DW. Unravelling the pathway of respiratory toxicity in goldlined seabream (Rhabdosargus sarba) induced by the harmful alga Chattonella marina. Aquat. Toxicol. 2011;104:185-191. https://doi.org/10.1016/j.aquatox.2011.04.014
  3. Clarens AF, Resurreccion EP, White MA, Colosi LM. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol. 2010;44:1813-1819. https://doi.org/10.1021/es902838n
  4. Lee GF, Rast W, Jones RA. Eutrophication of water bodies: insights for an age-old problem. Environ. Sci. Technol. 1978;12:900-908. https://doi.org/10.1021/es60144a606
  5. Alexander RB, Smith RA, Schwarz GE, Boyer EW, Nolan JV, Brakebill JW. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environ. Sci. Technol. 2008;42:822-830. https://doi.org/10.1021/es0716103
  6. Lee GF, Jones RA. Detergent phosphate bans and eutrophication. Environ. Sci. Technol. 1986;20:330-331. https://doi.org/10.1021/es00146a003
  7. Carpenter SR, Christensen DL, Cole JJ, et al. Biological control of eutrophication in lakes. Environ. Sci. Technol. 1995;29:784-786. https://doi.org/10.1021/es00003a028
  8. Bittencourt-Oliveira MC, Piccin-Santos V, Kujbida P, Moura AN. Cylindrospermopsin in water supply reservoirs in Brazil determined by immunochemical and molecular methods. J. Water Resour. Protec. 2011;3:349-355. https://doi.org/10.4236/jwarp.2011.36044
  9. Black K, Yilmaz M, Phlips E. Growth and toxin production by Microcystis aeruginosa PCC 7806 (Kutzing) Lemmerman at elevated salt concentrations. J. Environ. Protec. 2011;2:669-674. https://doi.org/10.4236/jep.2011.26077
  10. Hunter PD, Tyler AN, Gilvear DJ, Willby NJ. Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria. Environ. Sci. Technol. 2009;43:2627-2633. https://doi.org/10.1021/es802977u
  11. Gao Z, Peng X, Zhang H, Luan Z, Fan B. Montmorillonite-Cu(II)/Fe(III) oxides magnetic material for removal of cyanobacterial Microcystis aeruginosa and its regeneration. Desalination 2009;247:337-345. https://doi.org/10.1016/j.desal.2008.10.006
  12. Henderson RK, Parsons SA, Jefferson B. Surfactants as bubble surface modifiers in the flotation of algae: dissolved air flotation that utilizes a chemically modified bubble surface. Environ. Sci. Technol. 2008;42:4883-4888. https://doi.org/10.1021/es702649h
  13. Lohmann R, Gioia R, Jones KC, et al. Organochlorine pesticides and PAHs in the surface water and atmosphere of the North Atlantic and Arctic Ocean. Environ. Sci. Technol. 2009;43:5633-5639. https://doi.org/10.1021/es901229k
  14. Gandhi N, Diamond ML, van de Meent D, Huijbregts MA, Peijnenburg WJ, Guinee J. New method for calculating comparative toxicity potential of cationic metals in freshwater: application to copper, nickel, and zinc. Environ. Sci. Technol. 2010;44:5195-5201. https://doi.org/10.1021/es903317a
  15. Braungardt CB, Achterberg EP, Gledhill M, et al. Chemical speciation of dissolved Cu, Ni, and Co in a contaminated estuary in southwest Spain and its influence on plankton communities. Environ. Sci. Technol. 2007;41:4214-4220. https://doi.org/10.1021/es063042h
  16. Vijayaraghavan K, Jegan J, Palanivelu K, Velan M. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column. Chemosphere 2005;60:419-426. https://doi.org/10.1016/j.chemosphere.2004.12.016
  17. Yang D, Hu J, Fu S. Controlled synthesis of magnetite-silica nanocomposites via a seeded sol-gel approach. J. Phys. Chem. C 2009;113:7646-7651. https://doi.org/10.1021/jp900868d
  18. Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem. 2004;76:1316- 1321. https://doi.org/10.1021/ac034920m

Cited by

  1. Environmental Engineering Research in September 2012 vol.17, pp.3, 2012, https://doi.org/10.4491/eer.2012.17.3.123
  2. Magnetically modified microalgae and their applications pp.1549-7801, 2015, https://doi.org/10.3109/07388551.2015.1064085
  3. Synthesis and Anti-Algal Effect of Zinc Ferrite Nanoparticles vol.361, pp.1, 2016, https://doi.org/10.1002/masy.201400258
  4. Rapid separation of microalgaChlorella vulgarisusing magnetic chitosan: Process optimization using response surface methodology vol.34, pp.2, 2012, https://doi.org/10.1080/02726351.2015.1054973