• Title/Summary/Keyword: Alfalfa root

Search Result 55, Processing Time 0.054 seconds

Remobilization of Nitrogen Reserves and Analysis of Xylem Exudate during Regrowth of Alfalfa (Medicago sativa) (알팔파의 예취 후 재생시 저장질소의 재이동과 목부 삼출액의 분석)

  • 김태환
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.363-370
    • /
    • 1993
  • Experiments with non-nodulated alfalfa (Medicago sativa L. cv, Europe) plants grown in hydroponic cuiture, were carried out to estimate the remobiJization of nitrogen (N) reserves and to investigate the transported forms of reduced soluble-N in xylem during regrowth following shoot removal. Endogenous N remobilization were estimated by $^{15}N$ labelling and amino acids in xylem sap were analysed. The, $^{15}N$ contents of ~egr9wing leaves and stems increased as a result of remobilization of N reserves mainly from root ,system, Regrowing leaves were a stronger sink than regrowing stems, with about tWo-thirds of remobilized 15N being recoved in leaves. Endogenous N in lateral roots accounted for about 46% of the total N reserves used for regrowth, while tap roots accounted for 23%, About 72% of total endogenous N remobilized to regrowing shoot, occurred during the first 10 days of regrowth, The outflow of reduced soluble-N (mainly amino acids) was greater than that of protein-N, while the latter was the largest storage pool in tap root and lateral roots. It is suggested that amino acids-N was the most readily avaiable form of N reserves. Asparagine, which repre5ented about 75% of amino acids-N in xylem sap, was the main transported form of reduced N. Its relative contents, during the first 10 days of regrowth, decreased from 75% to 59%. This decline was accompanied by compensatory increase in the relative contents of asparatate and glutamine.

  • PDF

Molecular Genetics of the Model Legume Medicago truncatula

  • Nam, Young-Woo
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2001
  • Medicago truncatula is a diploid legume plant related to the forage crop alfalfa. Recently, it has been chosen as a model species for genomic studies due to its small genome, self-fertility, short generation time, and high transformation efficiency. M. truncatula engages in symbiosis with nitrogen-fixing soil bacterium Rhizobium meliloti. M. truncatula mutants that are defective in nodulation and developmental processes have been generated. Some of these mutants exhibited altered phenotypes in symbiotic responses such as root hair deformation, expression of nodulin genes, and calcium spiking. Thus, the genes controlling these traits are likely to encode functions that are required for Nod-factor signal transduction pathways. To facilitate genome analysis and map-based cloning of symbiotic genes, a bacterial artificial chromosome library was constructed. An efficient polymerase chain reaction-based screening of the library was devised to fasten physical mapping of specific genomic regions. As a genomics approach, comparative mapping revealed high levels of macro- and microsynteny between M. truncatula and other legume genomes. Expressed sequence tags and microarray profiles reflecting the genetic and biochemical events associated with the development and environmental interactions of M. truncatula are assembled in the databases. Together, these genomics programs will help enrich our understanding of the legume biology.

  • PDF

Clonig of CM-cellulase Gene of Rhizobium meliloti TAL1372 in Escherichia coli (Rhizobium meliloti TAL1372에서 섬유소분해효소 유전자 클로닝)

  • Park, Yong-Woo;Lim, Sun-Teak;Kang, Kyu-Young;Yun, Han-Dae
    • Applied Biological Chemistry
    • /
    • v.38 no.4
    • /
    • pp.313-319
    • /
    • 1995
  • The involvement of the cell-wall degrading enzymes in Rhizobium has long been an unsolved question about the infection process in the formation of root nodule. To assess the contribution of the cellulase to the nodulation of rhzobia, here we report the production of cellulase from R. meliloti TAL1372 which degrade carboxymethylcellulose (CMC) model substrate with CMC-plate method. We constructed a genomic library by cloning Sau3A-digested genomic DNA from R. meliloti TAL1372 into the BamHI site of the cosmid vector pLAFR3. Out of more than one thousand transductants of E. coli, one clone (pRC8-71) had CM-cellulase activity and contained pLAFR3 cosmid with 30 kb insert of R. meliloti DNA The product of CM-cellulase gene was analyzed by native PAGE. About 45 kD protein was considered to be a product of the gene. Tn5 mutagenesis reveals that the structural gene located in a ca. 3 kb KpnI fragment. The cellulase-minus mutants of R. meliloti TAL1372 were obtained by Tn5 mutagenesis of pRC8-71 and marker exchange techniques. Analyses of the nodulation ability of these Tn5 mutants showed that the CM-cellulase gene of R. meliloti TAL1372 may be involved in early nodulation development on alfalfa (Medicago satiua).

  • PDF

The Chemical Composition and Ruminal Dry Matter Digestibility of Leaves+Stems, Leaves, Stems and Roots of Aralia cordata Thunberg as a Roughage Sources (조사료원으로서 땅두릅(Aralia cordata Thunberg) 잎+줄기, 잎, 줄기 및 뿌리의 화학적 조성 및 반추위내 건물소화율)

  • Kim, Yong Ik;Lee, Hyung Suk;Kim, Yong Kook
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.1
    • /
    • pp.58-64
    • /
    • 1999
  • The chemical composition and ruminal dry matter digestibilities of leaves, stems and roots of Aralia cordata Thunberg were determined and compared each other as a roughage sources for ruminants. The crude protein contents were higher for leaves(12.4%) than for leaves+stems (9.7%), stem(5.1%) and roots (3.8%) (P<0.05). The crude fat contents were higher for leaves (3.7%) than for roots (2.1%) and stems (1.3%) (P<0.05). The crude fiber contents were lower for roots (12.3%) than for leaves (15.0%), leaves+stems (27.7%) and stems (40.3%) (P<0.05), respectively. The contents of neutral detergent fiber were lower for leaves (30.2%) than for leaves+stems (42.0%), roots (50.8%) and stems (60.0%) (P<0.05), respectively. The contents of acid detergent fiber were lower for root(18.3%) than for leaves(21.4%). leaves+stems (37.5%) and stems (49.6%) (P<0.05), respectively. The calcium content of leaves(2.4%) were higher than those of stems and roots (0.97% and 0.69%), however the phosphorus contents were similar among leaves, stems and roots(0.25%, 0.19% and 0.35%). Ruminal dry matter digestibilities for 12, 24, 48 and 72hr of leaves(38.9%, 65.9%, 79.8% and 82.4%) and roots(38.9%, 59.8%, 77.6% and 78.5%) were higher than stems(31.1%, 44.1%, 49.5% and 52.6%). Furthermore the digestibilities of leaves were higher than those of alfalfa hay(37.4%, 48.8%, 67.8% and 71.8%) and although the digestibilities of stems which were the lowest among the parts were higher than those of acasia wood chip(12.6%, 18.2%, 21.6% and 24.3%).

  • PDF

Growth Respose of Several Forage to Potassium Level in Water Culture (칼륨수준에 따른 수종 목초의 생육반응)

  • Sangdeog A. Kim;Shigekata Yoshida;Mitsuaki Ohshima;Ryosei Kayama
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.3
    • /
    • pp.129-136
    • /
    • 1990
  • In the present report, two experiments were carried out with the purposes of knowing the differences of response among forage species to growing period and potassium level in culture solution, and investigating possible relation of the responses with occurence of grass tetany on grazing pasture. The results were as follows; (1) At 25 days after germination, fresh weight of top part as well as the sum of top and root parts of the forages increased rapidly. (2) Italian ryegrass was the highest in potassium (K) content but the lowest in magnesiurn(Mg) content among the three gramineous forages, while tall fescue showed the opposite result to it. And orchardgrass was intermediate of the two forage species (Experiment 1). (3) The K contents of forages generally increased, while Mg content became lower with the increase of K level in culture solution. The highest K contents of Italian ryegrass and orchardgrass were more than 3 times of the lowest values. The K contents of alfalfa and tall fescue increased in the narrower range. The decreases of Mg content of Italian ryegrass and orchardgrass were significant in the ranges of 5ppm to 25 or 50ppm KzO, while the content of the leguminous forages and tall fescue decreased up to 1000 level. (4) Fresh yield, water content and K content of the forages were significantly increased with the increase of K20 application levels up to 25 or 50ppm. (5) The K concentration of forage on a tissue water basis was higher at 50ppm than that at 5ppm $K_20$ level, especially for Italian ryegrass and orchardgrass with the value of 2.6times and 2.5times, respectively. However, the K concentration (tissue water) of leguminous forages increased gradually up to the level of lOOOppm (Experiment 2). It is suggested from the results that rapid changes of water content, Mg content and K concentration (tissue water) may occur to forage on a grazing pasture, when both growing period and K level in the soil affect the changes simultaneously. Under such conditions, plant water especially in Italian reyegrass and orchardgrass can function as toxic material to grazing ruminants.

  • PDF