• 제목/요약/키워드: Alcohol induced transition

검색결과 8건 처리시간 0.026초

Effect of Poly(vinyl alcohol) on the Thermally Induced Conformational Change of Poly(D-Glutamic acid)

  • Cho Chong-Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제3권2호
    • /
    • pp.60-66
    • /
    • 1982
  • In relation to denaturation of proteins, thermally induced conformational change of poly(D-glutamic acid) was studied in the presence of poly(vinyl alcohol) at low pH, where poly(D-glutamic acid) undergoes a helix-to-${\beta}$ transition without any other polymer. In a dilute solution, poly(vinyl alcohol) enhanced the ${\alpah}-to-{\beta}_1$ transition of poly(D-glutamic acid) due to intermolecular interaction between the two polymers. On the other hand, this conformational change was interrupted to a large extent in a concentrated solution, due to the interpenetration of poly(vinyl alcohol) chain into poly(D-glutamic acid) chain which prevented the intramolecular association of poly(D-glutamic acid) chain. A conformational change from ${\beta}_1\;to\;{\beta}_2$ of poly(D-glutamic acid) was observed for the films obtained by casting during annealing the mixture solutions. The ${\beta}_2$ content in the cast film increased with increasing poly(vinyl alcohol) content in the mixture.

Alcohol and Temperature Induced Conformational Transitions in Ervatamin B: Sequential Unfolding of Domains

  • Kundu, Suman;Sundd, Monica;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.155-164
    • /
    • 2002
  • The structural aspects of ervatamin B have been studied in different types of alcohol. This alcohol did not affect the structure or activity of ervatamin B under neutral conditions. At a low pH (3.0), different kinds of alcohol have different effects. Interestingly, at a certain concentration of non-fluorinated, aliphatic, monohydric alcohol, a conformational switch from the predominantly $\alpha$-helical to $\beta$-sheeted state is observed with a complete loss of tertiary structure and proteolytic activity. This is contrary to the observation that alcohol induces mostly the $\alpha$helical structure in proteins. The O-state of ervatamin B in 50% methanol at pH 3.0 has enhanced the stability towards GuHCl denaturation and shows a biphasic transition. This suggests the presence of two structural parts with different stabilities that unfold in steps. The thermal unfolding of ervatamin B in the O-state is also biphasic, which confirms the presence of two domains in the enzyme structure that unfold sequentially. The differential stabilization of the structural parts may also be a reflection of the differential stabilization of local conformations in methanol. Thermal unfolding of ervatamin B in the absence of alcohol is cooperative, both at neutral and low pH, and can be fitted to a two state model. However, at pH 2.0 the calorimetric profiles show two peaks, which indicates the presence of two structural domains in the enzyme with different thermal stabilities that are denatured more or less independently. With an increase in pH to 3.0 and 4.0, the shape of the DSC profiles change, and the two peaks converge to a predominant single peak. However, the ratio of van't Hoff enthalpy to calorimetric enthalpy is approximated to 2.0, indicating non-cooperativity in thermal unfolding.

Shear-induced color transition of PDA (polydiacetylene) liposome in polymeric solutions

  • Lee, Sung-Sik;Chae, Eun-Hyuk;Ahn, Dong-June;Ahn, Kyung-Hyun;Yeo, Jong-Kee
    • Korea-Australia Rheology Journal
    • /
    • 제19권1호
    • /
    • pp.43-47
    • /
    • 2007
  • The polydiacethylene (PDA) is known to change its color by mechanical shear. The shear-induced color transition has been reported with elastomer or film type of PDA. In this paper, we newly investigated the transition with liposome type of PDAs in polymeric solutions. The liposomes were dispersed in Poly(vinyl alcohol) 2% + Sodium borate 1%, Poly(vinyl alcohol) 15% and Hyaluronic acid 1% (PVA/B, PVA, HA). The shear stress was continuously imposed to each solution by stress control type rheometer with coni-cylinder fixture. The degree of color transition was quantified with the characteristic absorbance peak at 540 nm (blue) and 640 nm (red). As a result, PDA liposome in PVA/B solution changed the color from blue to red upon increasing the magnitude of shear (from 0 to 100 Pa) and the duration of shear-imposed time (from 0 to 5400 sec). Meanwhile, PDA liposome in HA or PVA solution did not noticeably change the color, even though the low shear viscosities of the solutions were kept almost constant. This color transition of PDA liposome is expected to measure the magnitude of shear, and to distinguish different responses of polymeric solutions to the applied shear.

Unfolding of Ervatamin C in the Presence of Organic Solvents: Sequential Transitions of the Protein in the O-state

  • Sundd, Monica;Kundu, Suman;Dubey, Vikash Kumar;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • 제37권5호
    • /
    • pp.586-596
    • /
    • 2004
  • The folding of ervatamin C was investigated in the presence of various fluorinated and non-fluorinated organic solvents. The differences in the unfolding of the protein in the presence of various organic solvents and the stabilities of O-states were interpreted. At pH 2.0, non-fluorinated alkyl alcohols induced a switch from the native $\alpha$-helix to a $\beta$-sheet, contrary to the $\beta$-sheet to $\alpha$-helix conversion observed for many proteins. The magnitude of ellipticity at 215 nm, used as a measure of $\beta$-content, was found to be dependent on the concentration of the alcohol. Under similar conditions of pH, fluorinated alcohol enhanced the intrinsic a-helicity of the protein molecule, whereas the addition of acetonitrile reduced the helical content. Ervatamin C exhibited high stability towards GuHCl induced unfolding in different O-states. Whereas the thermal unfolding of O-states was non-cooperative, contrary to the cooperativity seen in the absence of the organic solvents under similar conditions. Moreover, the differential scanning calorimetry endotherms of the protein acquired at pH 2.0 were deconvoluted into two distinct peaks, suggesting two cooperative transitions. With increase in pH, the shape of the thermogram changed markedly to exhibit a major and a minor transition. The appearance of two distinct peaks in the DSC together with the non-cooperative thermal transition of the protein in O-states indicates that the molecular structure of ervatamin C consists of two domains with different stabilities.

알코올의 농도에 따른 실크 비드의 적외선 분광 특성 (Effect of ethanol concentration on the infrared spectroscopic characteristics of silk beads)

  • 김성국;조유영;이광길;김기영;김현복;권해용
    • 한국잠사곤충학회지
    • /
    • 제53권2호
    • /
    • pp.118-123
    • /
    • 2015
  • 알코올의 농도 변화에 따른 실크단백질의 구조전이 효과에 대하여 살펴보기 위하여 백옥잠 누에고치를 이용하여 실크단백질 용액을 제조하였다. 알코올의 농도를 100%, 70%, 50%로 조절하여 제조한 실크 비드의 적외선 분광 분석을 하였다. 고농도(100%) 알코올로 처리한 실크단백질은 전형적인 ${\beta}-sheet$ 구조를 반영하는 $1265cm^{-1}$ 부근에서 흡수대를 보였으며 모델 약물로 사용한 4HR의 특성 피크는 관찰되지 않았다. 알코올의 농도를 70%, 50%로 조절하여 처리한 경우에는 모델 약물의 흡수대인 $2933cm^{-1}$ 부근, $1069cm^{-1}$ 부근, 그리고 $973cm^{-1}$ 부근의 흡수대가 발현되었다. 이러한 결과는 알코올의 농도에 따라 조성되는 실크단백질의 미세 구조에 차이가 있음을 나타내며, 보다 정밀한 실크단백질 구조 제어를 위한 추가 연구가 필요한 것으로 생각된다.

A Helix-induced Oligomeric Transition of Gaegurin 4, an Antimicrobial Peptide Isolated from a Korean Frog

  • Eun, Su-Yong;Jang, Hae-Kyung;Han, Seong-Kyu;Ryu, Pan-Dong;Lee, Byeong-Jae;Han, Kyou-Hoon;Kim, Soon-Jong
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.229-236
    • /
    • 2006
  • Gaegurin 4 (GGN4), a novel peptide isolated from the skin of a Korean frog, Rana rugosa, has broad spectrum antimicrobial activity. A number of amphipathic peptides closely related to GGN4 undergo a coil to helix transition with concomitant oligomerization in lipid membranes or membrane-mimicking environments. Despite intensive study of their secondary structures, the oligomeric states of the peptides before and after the transition are not well understood. To clarify the structural basis of its antibiotic action, we used analytical ultracentrifugation to define the aggregation state of GGN4 in water, ethyl alcohol, and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). The maximum size of GGN4 in 15% HFIP corresponded to a decamer, whereas it was monomeric in buffer. The oligomeric transition is accompanied by a cooperative 9 nm blue-shift of maximum fluorescence emission and a large secondary structure change from an almost random coil to an ${\alpha}$-helical structure. GGN4 induces pores in lipid membranes and, using electrophysiological methods, we estimated the diameter of the pores to be exceed $7.3{\AA}$, which suggests that the minimal oligomer structure responsible is a pentamer.

Effect of STAT3 on Lysophosphatidic Acid-Induced Oral Cancer Cell Invasion

  • Song, Zi Hae;Cho, Kyung Hwa;Kim, Jin Young;Lee, Hoi Young
    • 치위생과학회지
    • /
    • 제19권2호
    • /
    • pp.141-146
    • /
    • 2019
  • Background: Oral cancer has a high incidence worldwide and has been closely associated with smoking, alcohol, and infection by the human papillomavirus. Metastasis is highly important for oral cancer survival. Lysophosphatidic acid (LPA) is a bioactive lipid mediator that promotes various cellular processes, including cell survival, proliferation, metastasis, and invasion. Signal transducer and activator of transcription (STATs) are transcription factors that mediate gene expression. Among the seven types of STATs in mammals, STAT3 is involved in invasion and metastasis of numerous tumors. However, little is known about the role of STAT3 in oral tumor invasion. In the present study, we hypothesized that STAT3 mediates LPA-induced oral cancer invasion. Methods: Immunoblotting was performed to analyze LPA-induced STAT3 activation. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was performed to assess the survival rates of YD-10B cells. STAT3 levels in LPA-treated oral tumor cells were evaluated by performing in vitro invasion assay. Results: To the best of our knowledge, this is the first study to demonstrate that LPA enhances STAT3 phosphorylation in oral cancer. In addition, treatment with WP1066, a selective inhibitor of STAT3, at a concentration that does not cause severe reduction in cell viability, significantly attenuated LPA-induced YD-10B cancer cell invasion. Conclusion: The results suggested that LPA induces oral tumor cells with greater invasive potential via STAT3 activation. Our findings provided important insights into the mechanisms underlying mouth neoplasms.

제올라이트 메소라이트의 수압 하 탄성특성 (Elastic Behavior of Zeolite Mesolite under Hydrostatic Pressure)

  • 이용재;이용문;성동훈;장영남
    • 자원환경지질
    • /
    • 제42권5호
    • /
    • pp.509-512
    • /
    • 2009
  • 제올라이트 메소라이트($Na_{5.33}Ca_{5.33}Al_{16}Si_{24}O_{80}{\cdot}21.33H_2O$)에 대한 고압에서의 회절자료가 200 마이크론 크기로 단색화 된 방사광가속기 X-선원과 다이아몬드 앤빌셀을 사용하여 5 GPa까지 측정되었다. 물과 알코올을 사용한 수압 하에서 메소라이트의 초기 탄성 특성은 0.5 GPa에서 1.5 GPa 사이에서 일어나는 ab-평면의 연속적인 팽창과 c-축 상의 수축에 기인한 전체적인 격자부피의 팽창으로 관찰된다. 이후의 압력에서는 회절패턴의 변화로부터 질서-무질서 전이의 증거가 보여진다. 메소라이트의 c-축에 평행한 채널에는 양이온으로서 소디움과 칼슘이 b-축 방향으로 1:2 비율의 질서 있는 배열을 보이고 있는데 이로 인해 1.5 GPa까지 에서는 이러한 배열의 증거인 $3b_{natrolite}$ 격자패턴이 관찰된다. 격자부피의 확장 이후 1.5 GPa 이상에서 2.5 GPa 까지 에서는 격자부피 변화의 정도가 약해지며, 양이온의 무질서적인 배열에 의한 $b_{natrolite}$ 격자패턴이 관찰된다. 이후 압력의 계속된 증가는 점진적인 격자부피의 감소를 유발시키며 새로운 형태의 질서 있는 배열상을 지시하는 $3c_{natrolite}$ 격자패턴으로의 변화를 보여준다. 이로부터 압력에 의한 초수화 상태의 메소라이트는 질서-무질서-질서 형태의 채널 내부 혹은 채널간의 양이온 배열패턴 변화를 겪는 것으로 추정할 수 있다.