• Title/Summary/Keyword: AlN substrate

Search Result 396, Processing Time 0.029 seconds

Properties of AlN epilayer grown on 6H-SiC substrate by mixed-source HVPE method (6H-SiC 기판 위에 혼합소스 HVPE 방법으로 성장된 AlN 에피층 특성)

  • Park, Jung Hyun;Kim, Kyoung Hwa;Jeon, Injun;Ahn, Hyung Soo;Yang, Min;Yi, Sam Nyung;Cho, Chae Ryong;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.96-102
    • /
    • 2020
  • In this paper, AlN epilayers on 6H-SiC (0001) substrate are grown by mixed source hydride vapor phase epitaxy (MS-HVPE). AlN epilayer of 0.5 ㎛ thickness was obtained with a growth rate of 5 nm per hour. The surface of AlN epilayer grown on 6H-SiC (0001) substrate was investigated by field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Dislocation density was considered through HR-XRD and related calculations. A fine crystalline AlN epilayer with screw dislocation density of 1.4 × 109 cm-2 and edge dislocation density of 3.8 × 109 cm-2 was confirmed. The AlN epilayer on 6H-SiC (0001) substrate grown by using the mixed source HVPE method could be applied to power devices.

The characterization of AlN thin films grown on GaAs(100) substrate (GaAs(100) 기판위에 성장된 AIN 박막의 특성)

  • 정성훈;김영호;송복식;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.33-36
    • /
    • 1996
  • AIN thin films were prepared using by Rf sputtering method on the GaAs(170) substrate and investigated by X-ray diffractometer, IR spectroscopy, n&k system. The parameters were the substrate temperature, RF power, sputtering duration and the $N_2$/Ar ratio. The AlN thin films of (101) orientation were obtained under the conditions of room temperature and the nitrogen of 60 vol.%. The crystallinity of the films, which were grown respectively under the different conditions, were determined by the comparison of the band width of an E$_1$[TO:680$cm^{-1}$ /] phonon mode. The thicknesses of AlN films were decreased dramatically in the region of the nitrogen of 40~60 vol.% according to the increment of the $N_2$/Ar ratio by which the sputter yield got lower.

  • PDF

Comparison of Degradation Behaviors for Titanium-based Hard Coatings by Pulsed Laser Thermal Shock

  • Jeon, Seol;Lee, Heesoo
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.523-527
    • /
    • 2013
  • Ti-based coatings following laser ablation were studied to compare degradation behaviors by thermomechanical stress. TiN, TiCN, and TiAlN coatings were degraded by a Nd:YAG pulsed laser with an increase in the laser pulses. A decrease in the hardness was identified as the pulses increased, and the hardness levels were in the order of TiAlN > TiCN > TiN. The TiN showed cracks on the surface, and cracks with pores formed along the cracks were observed in the TiCN. The dominant degradation behavior of the TiAlN was surface pore formation. EDS results revealed that diffusion of substrate atoms to the coating surface occurred in the TiN. Delamination occurred in the TiN and TiCN, while the TiAlN which has higher thermal stability than the TiN and TiCN maintained adhesion to the substrate. It was considered that the decrease in the hardness of the Ti-based hard coatings is attributed to surface cracking and the diffusion of substrate atoms.

Synthesis and Characterization of Al Film using N-methylpyrrolidine Alane (N-methylpyrrolidine Alane 전구체를 사용한 Al 필름 합성 및 특성 분석)

  • Seo, Moon-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.549-554
    • /
    • 2009
  • Al thin films were synthesized on TiN/Si substrate by MOCVD using N-methylpyrrolidine alane (MPA) precursor. Effects of substrate temperature, reaction pressure on the deposition rate, surface roughness and electrical resistivity were investigated. The early stage of Al thin film formation was analyzed by in-situ surface reflectivity measurement with a laser and photometer apparatus. From the Arrhenius plot of deposition rate vs. substrate temperature, it was found that the activation energy of surface reaction was 91.1kJ/mole, and the transition temperature from surface-reaction-limited region to mass-transfer-limited region was about $150^{\circ}C$. The growth rate increased with the reaction pressure, and average growth rates of $200{\sim}1,200nm/min$ were observed at various experimental conditions. Surface roughness of the film increased with the film thickness. The electrical resistivity of Al film was about $4{\mu}{\Omega}{\cdot}cm$ in the case of optimum condition, and it was close to the value of the bulk Al, $2.7{\mu}{\Omega}{\cdot}cm$.

Study on Self-Heating Effects in AlGaN/GaN-on-Si Power Transistors (AlGaN/GaN-on-Si 전력스위칭소자의 자체발열 현상에 관한 연구)

  • Kim, Shin Young;Cha, Ho-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.91-97
    • /
    • 2013
  • Self-heating effects during operation of high current AlGaN/GaN power transistors degrade the current-voltage characteristics. In particular, this problem becomes serious when a low thermal conductivity Si substrate is used. In this work, AlGaN/GaN-on-Si devices were fabricated with various channel widths and Si substrate thicknesses in which the structure dependent self-heating effects were investigated by temperature dependent measurements as well as thermal simulation. Accordingly, a device structure that can effectively dissipate the heat was proposed in order to achieve the maximum current in a multi-channel, large area device. Employing via-holes and common electrodes with a 100 ${\mu}m$ Si substrate thickness improved the current level by 75% reducing the channel temperature by 68%.

Evaluation of Thermal Conductivity for Screen-Printed AlN Layer on Al Substrate in Thickness Direction (알루미늄 기판에 스크린 인쇄한 AlN 후막의 두께 방향으로 열전도도 평가)

  • Kim, Jong-Gu;Park, Hong-Seok;Kim, Hyun;Hahn, Byung-Dong;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.65-70
    • /
    • 2015
  • A study on thermal properties for a single-layer metal and two-layer composites was investigated for the heat-sink application. For the single-layer metal, an aluminum alloy (Al6061) was selected. A screen printed aluminum nitride (AlN) layer on the Al6061 substrate was chosen for the two-layer composites. The thermal conductivity of the sample was determined from the thermal diffusivity measured by the light flash analysis (LFA), specific heat and density. Measured thermal property values were compared to calculated values using the data from the references. The thermal conductivity of composites with screen printed AlN layer on the Al6061 substrate decreased linearly with increasing the thickness of AlN layer. Measured values of the thermal conductivity for composites with $53{\mu}m$ and $163{\mu}m$ thick AlN layers were $114.1W/m{\cdot}K$ and $72.3W/m{\cdot}K$, respectively. In particular, the thermal conductivity of the screen-printed AlN layer was demonstrated by appling the rule of mixture in view point of thermal resistivity. Measured values of the thermal conductivity for AlN layers with the thickness of $53{\mu}m$ and $163{\mu}m$ showed $9.35W/m{\cdot}K$ and $12.40W/m{\cdot}K$, respectively.

Characterization of AlN Thin Films Grown by Plasma Assisted Molecular Beam Epitaxy on Si Substrate (실리콘 기판위에 플라즈마 분자선 에피택시를 이용하여 성장된 질화알루미늄 박막의 특성분석)

  • 홍성의;한기평;백문철;조경익;윤순길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.828-833
    • /
    • 2000
  • Growth characteristics and microstructure of AIN thin films grown by plasma assisted molecular beam epitaxy on Si substrates have been investigated. Growing temperature and substrate orientation were chosen as major variables of the experiment. Reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy/diffraction (TEM/TED) techniques were employed to characterize the micorstructure of the films. On Si(100) substrates, AlN thin films were grown along the hexagonal c-axis preferred orientation at temperature range 850-90$0^{\circ}C$. However on Si(111), the AlN films were epitaxially grown with directional coherency in AlN(0001)/Si(111), AlN(1100)/Si(110), and AlN(1120)/Si(112) at 85$0^{\circ}C$ and the epitaxial coherencry seemed to be slightly distorted with increasing temperature. The microstructure of AlN thin films on Si(111) substrates showed that the films include a lot of crystal defects and there exist micro-gaps among the columns.

  • PDF

Microstructural ananalysis of AlN thin films on Si substrate grown by plasma assisted molecular beam epitaxy (RAMBE를 사용하여 Si 기판 위에 성장된 AIN 박막의 결정성 분석)

  • 홍성의;한기평;백문철;조경익;윤순길
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.22-26
    • /
    • 2001
  • Microstructures of AlN thin films on Si substrates grown by plasma assisted molecular beam epitaxy were analyzed with various growth temperatures and substrate orientations. Reflection high energy electron diffraction (RHEED) patterns were checked for the in-situ monitoring of the growth condition. X-ray diffraction(XRD), double crystal X-ray diffraction (DCXD), and transmission electron microscopy/diffraction (TEM/TED) techniques were employed to characterize the microstructure of the films after growth. On Si(100) sub-strates, AlN thin films were grown mostly along the hexagonal c-axis orientation at temperature higher than $850^{\circ}C$. On the other hand the AlN films on Si(111) were epitaxially grown with directional coherencies in AlN(0001)/Si(111), AlN(1100)/Si(110), and AlN(1120)/Si(112). The microstructure of AlN thin films on Si(111) substrates, with a full width at half maximum of almost 3000 arcsec at 2$\theta$=$36.2^{\circ}$, showed that the single crystal films were grown, even if they includ a lot of crystal defects such as dislocations and stacking faults.

  • PDF

GaN Film Growth Characteristics Comparison in according to the Type of Buffer Layers on PSS (PSS 상 버퍼층 종류에 따른 GaN 박막 성장 특성 비교)

  • Lee, Chang-Min;Kang, Byung Hoon;Kim, Dae-Sik;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.645-651
    • /
    • 2014
  • GaN is most commonly used to make LED elements. But, due to differences of the thermal expansion coefficient and lattice mismatch with sapphire, dislocations have occurred at about $109{\sim}1010/cm^2$. Generally, a low temperature GaN buffer layer is used between the GaN layer and the sapphire substrate in order to reduce the dislocation density and improve the characteristics of the thin film, and thus to increase the efficiency of the LED. Further, patterned sapphire substrate (PSS) are applied to improve the light extraction efficiency. In this experiment, using an AlN buffer layer on PSS in place of the GaN buffer layer that is used mainly to improve the properties of the GaN film, light extraction efficiency and overall properties of the thin film are improved at the same time. The AlN buffer layer was deposited by using a sputter and the AlN buffer layer thickness was determined to be 25 nm through XRD analysis after growing the GaN film at $1070^{\circ}C$ on the AlN buffer CPSS (C-plane Patterned Sapphire Substrate, AlN buffer 25 nm, 100 nm, 200 nm, 300 nm). The GaN film layer formed by applying a 2 step epitaxial lateral overgrowth (ELOG) process, and by changing temperatures ($1020{\sim}1070^{\circ}C$) and pressures (85~300 Torr). To confirm the surface morphology, we used SEM, AFM, and optical microscopy. To analyze the properties (dislocation density and crystallinity) of a thin film, we used HR-XRD and Cathodoluminescence.

Optimum deposition conditions of AlN thin film on the Si substrate for SAW application (SAW 소자 응용을 위한 실리콘 기판 위에 AlN 박막의 최적 증착 조건에 관한 연구)

  • Ko, Bong-Chul;Nam, Chang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.301-306
    • /
    • 2007
  • AlN thin film for SAW filter application was deposited on (100) silicon wafers by reactive magnetron sputtering method. The structural characteristics were dependent on the deposition conditions such as sputtering pressure, RF power, substrate temperature, and nitrogen partial pressure. Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Electron Probe MicroAnalyzer (EPMA) and Atomic Force Microscope (AFM) have been used to find out structural properties and preferred orientation of AlN thin films. Insertion loss of SAW devices was 28.51 dB and out of band rejection was about 24 dB.