• Title/Summary/Keyword: AlN substrate

Search Result 396, Processing Time 0.032 seconds

RF High Power Amplifier Module using AlN Substrate (AlN 기판을 이용한 RF 고전력 증폭기 모듈)

  • Kim, Seung-Yong;Nam, Choong-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.826-831
    • /
    • 2009
  • In this paper, a high power RF amplifier module using AlN substrate of high thermal conductivity has been proposed. This RF amplifier module has the advantage of compact size and effective heat dissipation for the packaging of high power chip. To fabricate the thru-hole and scribing line on AlN substrate, the key parameters of $CO_2$ laser were experimented. And then, microstrip lines and spiral planar inductors were fabricated on an AlN substrate using the thin-film process. The fabricated microstrip lines on the AlN substrate has an attenuation value of 0.1 dB/mm up to 10 GHz. The fabricated spiral planar inductor has a high quality factor, a maximum of about 62 at 1 GHz for a 5.65 nH inductor. Packaging of a RF power amplifier was implemented on an AlN substrate with thru-hole. From the measured results, the gain is 24 dB from 13 to 15 GHz and the output power is 33.65 dBm(2.3 W).

The Influence of AlN Buffer Layer Thickness on the Growth of GaN on a Si(111) Substrate with an Ultrathin Al Layer

  • Kwon, Hae-Yong;Moon, Jin-Young;Bae, Min-Kun;Yi, Sam-Nyung;Shin, Dae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.461-467
    • /
    • 2008
  • It was studied the effect of a pre-deposited ultrathin Al layer as part of a buffer layer for the growth of GaN. AlN buffer layers were deposited on a Si(111) substrate using an RF sputtering technique, followed by GaN using hydride vapor phase epitaxy (HVPE). Several atomic layers of Al were deposited prior to AlN sputtering and the samples were compared with the others grown without pre-deposition of Al. And it was also studied the influence of AlN buffer layer thickness on the growth of GaN. The peak wavelength of the photoluminescence (PL) was varied with increasing the thickness of the GaN and AlN layers. The optimum thickness of AlN on a Si(111) substrate with an ultrathin Al layer was about $260{\AA}$. Scanning electron microscope (SEM) images showed coalescent surface morphology and X-ray diffraction (XRD) showed a strongly oriented GaN(0002) peak.

Influence of Residual Oxygen on the growth of AlN Thin Films with Substrate Temperature (기판 온도 변화에 따른 AlN 박막 성장에 잔류 산소가 미치는 영향)

  • Kim, Byoung-Kyun;Lee, Eul-Tack;Kim, Eung-Kwon;Jeong, Seok-Won;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.463-467
    • /
    • 2008
  • Aluminum nitride (AlN) thin films have been deposited on Au electrodes by using reactive RF magnetron sputtering method in a gas mixture of Ar and $N_2$ at different substrate temperature. It was found that substrate temperature was varied in the range up to $400^{\circ}C$, highly c-axis oriented film can be obtained at $300^{\circ}C$ with full width at half maximum (FWHM) $3.1^{\circ}$. Increase in surface roughness from 3.8 nm to 5.9 nm found to be associated with increase in grain size, with substrate temperature; however, the AlN film fabricated at $400^{\circ}C$ exhibited a granular type of structure with non-uniform grains. The Al 2p and N 1s peak in the X-ray photoelectron spectroscopy (XPS) spectrum confirmed the formation of Al-N bonds. The XPS spectrum also indicated the presence of oxynitrides and oxides, resulting from the presence of residual oxygen in the vacuum chamber. It is concluded that the AlN film deposited at substrate temperature of $300^{\circ}C$ exhibited the most desirable properties for the application of high-frequency surface acoustic devices.

Effect of Negative Substrate Bias Voltage on the Microstructure and Mechanical Properties of Nanostructured Ti-Al-N-O Coatings Prepared by Cathodic Arc Evaporation

  • Heo, Sungbo;Kim, Wang Ryeol;Park, In-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.133-138
    • /
    • 2021
  • Ternary Ti-X-N coatings, where X = Al, Si, Cr, O, etc., have been widely used for machining tools and cutting tools such as inserts, end-mills, and etc. Ti-Al-N-O coatings were deposited onto silicon wafer and WC-Co substrates by a cathodic arc evaporation (CAE) technique at various negative substrate bias voltages. In this study, the influence of substrate bias voltages during deposition on the microstructure and mechanical properties of Ti-Al-N-O coatings were systematically investigated to optimize the CAE deposition condition. Based on results from various analyses, the Ti-Al-N-O coatings prepared at substrate bias voltage of -80 V in the process exhibited excellent mechanical properties with a higher compressive residual stress. The Ti-Al-N-O (-80 V) coating exhibited the highest hardness around 30 GPa and elastic modulus around 303 GPa. The improvement of mechanical properties with optimized bias voltage of -80 V can be explained with the diminution of macroparticles, film densification and residual stress induced by ion bombardment effect. However, the increasing bias voltage above -80 V caused reduction in film deposition rate in the Ti-Al-N-O coatings due to re-sputtering and ion bombardment phenomenon.

The Properties of GaN Grown by BVPE Method on the Si(111) Substrate with Pre-deposited Al Layer (Al 박막이 증착 된 Si(111) 기판 위에 HVPE 방법으로 성장한 GaN의 특성)

  • Shin Dae Hyun;Baek Shin Young;Lee Chang Min;Yi Sam Nyung;Kang Nam Lyong;Park Seoung Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.201-206
    • /
    • 2005
  • In this work, we tried to improve the fabrication process in HVPE (Hydride Vapor Phase Epitaxy) system by using Si(111) substrate with pre-deposited Al layer. PL measurements was done for samples with and without pre-deposited Al on Si and it was also examined the dependence of the optical characteristic properties on AlN buffer thickness for GaN/AIN/Al/Si. A sample with thin Al nucleation layer on Si substrate reveals a better optical property than the other. And it suggests that the thickness for AlN buffer layer with thin Al nucleation layer on Si(111) substrate is most proper about $260{\AA}$ to grow GaN in HVPE system. The surface morphology of GaN clearly shows the hexagonal crystallization. The XRD pattern showed strong peak at GaN{0001} direction.

Comparison of growth and properties of GaN with various AlN buffer layers on Si (111) substrate (Si (111) 기판 위에 다양한 AIN 완충층을 이용한 GaN 성장과 특성 비교)

  • 신희연;이정욱;정성훈;유지범;양철웅
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.50-58
    • /
    • 2002
  • The growth of GaN films on Si substrate has many advantages in that Si is less expensive than sapphire substrate and that integration of GaN-based devices with Si substrate is easier The difference of lattice constant and thermal expansion coefficient between GaN and Si is larger than those between GaN and sapphire. However, which results in many defects into the grown GaN. In order to obtain high duality GaN films on Si substrate, we need to reduce defects using the buffer layer such as AlN. In this study, we prepared three types of AlN buffer layer with various crystallinity on Si (111) substrate using MOCVD, Sputtering and MOMBE methods. GaN was grown by MOCVD on three types of AlN/Si substrate. Using TEM and XRD, we carried out comparative investigation of growth and properties of GaN deposited on the various AlN buffers by characterizing lattice coherency, crystallinity, growth orientation and defects formed (voids, stacking faults, dislocations, etc). It is found that the crystallinity of AlN buffer layer has strong effects on growth of GaN. The AlN buffer layers grown by MOCVD and MOMBE showed the reduction of out-of-plane misorientation of GaN at the initial growth stage.

Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate (패턴화된 사파이어 기판 위에 증착된 AlN 버퍼층 박막의 에피층 구조의 광학적 특성에 대한 영향)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this research, 50 nm thick AlN thin films were deposited on the patterned sapphire (0001) substrate by using HVPE (Hydride Vapor Phase Epitaxy) system and then epitaxial layer structure was grown by MOCVD (metal organic chemical vapor deposition). The surface morphology of the AlN buffer layer film was observed by SEM (scanning electron microscopy) and AFM (atomic force microscope), and then the crystal structure of GaN films of the epitaxial layer structure was investigated by HR-XRC (high resolution X-ray rocking curve). The XRD peak intensity of GaN thin film of epitaxial layer structure deposited on AlN buffer layer film and sapphire substrate was rather higher in case of that on PSS than normal sapphire substrate. In AFM surface image, the epitaxial layer structure formed on AlN buffer layer showed rather low pit density and less defect density. In the optical output power, the epitaxial layer structure formed on AlN buffer layer showed very high intensity compared to that of the epitaxial layer structure without AlN thin film.

A Study on the Phase Transformations of (TiAl)N Films Deposited by TFT Sputtering System (TFT(Two-Facing-Targets) 스퍼터장치에 의해 증착된 (TiAl)N 박막의 상변태에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.281-287
    • /
    • 2005
  • Titanium aluminium nitride((TiAl)N) film is anticipated as an advanced coating film with wear resistance used for drills, bites etc. and with corrosion resistance at a high temperature. In this study, (TiAl)N thin films were deposited both at room temperature and at elevated substrate temperatures of 573 to 773 K by using a two-facing-targets type DC sputtering system in a mixture Ar and $N_2$ gases. Atomic compositions of the binary Ti-Al alloy target is Al-rich (25Ti-75Al (atm%)). Process parameters such as precursor volume %, substrate temperature and Ar/$N_2$ gas ratio were optimized. The crystallization processes and phase transformations of (TiAl)N thin films were investigated by X-ray diffraction, field-emission scanning electron microscopy. The microhardness of (TiAl)N thin films were measured by a dynamic hardness tester. The films obtained with Ar/$N_2$ gas ratio of 1:3 and at 673 K substrate temperature showed the highest microhardness of $H_v$ 810. The crystallized and phase transformations of (TiAl)N thin films were $Ti_2AlN+AlN{\rightarrow}TiN+AlN$ for Ar/$N_2$ gas ratio of 1:3, $Ti_2AlN+AlN{\rightarrow}TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 1:1 and $TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN{\rightarrow}Ti_2AlN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 3:1. The above results are discussed in terms of crystallized phases and microhardness.

Investigation on HT-AlN Nucleation Layers and AlGaN Epifilms Inserting LT-AlN Nucleation Layer on C-Plane Sapphire Substrate

  • Wang, Dang-Hui;Xu, Tian-Han
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.125-129
    • /
    • 2016
  • In this study, we have investigated a high-temperature AlN nucleation layer and AlGaN epilayers on c-plane sapphire substrate by low-pressure metal-organic chemical vapor deposition (LP-MOCVD). High resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), scanning electron microscope (SEM) and Raman scattering measurements have been exploited to study the crystal quality, surface morphology, and residual strain of the HT-AlN nucleation layer. These analyses reveal that the insertion of an LT-AlN nucleation layer can improve the crystal quality, smooth the surface morphology of the HT-AlN nucleation layer and further reduce the threading dislocation density of AlGaN epifilms. The mechanism of inserting an LT-AlN nucleation layer to enhance the optical properties of HT-AlN nucleation layer and AlGaN epifilm are discussed from the viewpoint of driving force of reaction in this paper.

Effect of Working Pressure and Substrate Bias on Phase Formation and Microstructure of Cr-Al-N Coatings

  • Choi, Seon-A;Kim, Seong-Won;Lee, Sung-Min;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.511-517
    • /
    • 2017
  • With different working pressures and substrate biases, Cr-Al-N coatings were deposited by hybrid physical vapor deposition (PVD) method, consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP) processes. Cr and Al targets were used for the arc ion plating and the sputtering process, respectively. Phase analysis, and composition, binding energy, and microstructural analyses were performed using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM), respectively. Surface droplet size of Cr-Al-N coatings was found to decrease with increasing substrate bias. A decrease of the deposition rate of Cr-Al-N films was expected due to the increase of substrate bias. The coatings were grown with textured CrN phase and (111), (200), and (220) planes. X-ray diffraction data show that all Cr-Al-N coatings shifted to lower diffraction angles due to the addition of Al. The XPS results were used to determine the $Cr_2N$, CrN, and (Cr,Al)N binding energies. The compositions of the Cr-Al-N films were measured by XPS to be Cr 23.2~36.9 at%, Al 30.1~40.3 at%, and N 31.3~38.6 at%.