• Title/Summary/Keyword: AlN films

Search Result 495, Processing Time 0.035 seconds

Growth and photocurrent study on the splitting of the valence band for $CuInSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)범에 의한 $CuInSe_2$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong Myungseak;Hong Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.244-252
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuInSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $_CuInSe2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}/\textrm{cm}^3$, 296 $\textrm{cm}^2$/Vㆍs at 293 K, respectively. The temperature dependence of the energy band gap of the $CuInSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 1.1851 eV -($8.99\times10^{-4} eV/K)T^2$(T + 153 K). The crystal field and the spin-orbit splitting energies for the valence band of the CuInSe$_2$ have been estimated to be 0.0087 eV and 0.2329 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the $\Gamma$6 states of the valence band of the $CuInSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-, B_1$-와 $C_1$-exciton peaks for n = 1.

Oxygen Vacancy Effects of Two-Dimensional Electron Gas in SrTiO3/KNbO3 Hetero Structure

  • Choi, Woo-Sung;Kang, Min-Gyu;Do, Young-Ho;Jung, Woo-Suk;Ju, Byeong-Kwon;Yoon, Seok-Jin;Yoo, Kwang-Soo;Kang, Chong-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.244-248
    • /
    • 2013
  • The discovery of a two-dimensional electron gas (2DEG) in $LaAlO_3$ (LAO)/$SrTiO_3$ (STO) heterostructure has stimulated intense research activity. We suggest a new structure model based on $KNbO_3$ (KNO) material. The KNO thin films were grown on $TiO_2$-terminated STO substrates as a p-type structure ($NbO_2/KO/TiO_2$) to form a two-dimensional hole gas (2DHG). The STO thin films were grown on KNO/$TiO_2$-terminated STO substrates as an n-type structure to form a 2DEG. Oxygen pressure during the deposition of the KNO and STO thin films was changed so as to determine the effect of oxygen vacancies on 2DEGs. Our results showed conducting behavior in the n-type structure and insulating properties in the p-type structure. When both the KNO and STO thin films were deposited on a $TiO_2$-terminated STO substrate at a low oxygen pressure, the conductivity was found to be higher than that at higher oxygen pressures. Furthermore, the heterostructure formed at various oxygen pressures resulted in structures with different current values. An STO/KNO heterostructure was also grown on the STO substrate, without using the buffered oxide etchant (BOE) treatment, so as to confirm the effects of the polar catastrophe mechanism. An STO/KNO heterostructure grown on an STO substrate without BOE treatment did not exhibit conductivity. Therefore, we expect that the mechanics of 2DEGs in the STO/KNO heterostructures are governed by the oxygen vacancy mechanism and the polar catastrophe mechanism.

Plasma-Sprayed $Al_2O_3-SiO_2$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modulus. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing. These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma-sprayed coatings.

  • PDF

Plasma-Sprayed $Al_{2}O_{3}-SiO_{2}$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modules. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$ on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing, These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma- sprayed coatings.

  • PDF

Comparative Study of surface passivation for Metamorphic HEMT using low-k Benzocyclobutene(BCB) (Metamorphic HEMT에서 low-k Benzocyclobutene(BCB)를 이용한 표면 passivation 비교 연구)

  • Baek, Yong-Hyun;Oh, Jung-Hun;Han, Min;Choi, Seok-Gyu;Lee, Bok-Hyung;Lee, Seong-Dae;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.4
    • /
    • pp.80-85
    • /
    • 2007
  • The passivation is one of the important technologies for protection of the devies from damage. In this paper, we fabricated $0.1{\mu}m\;{\Gamma}$--gate InAIAs/InGaAs metamorphic high electron mobility transistors (MHEMTs) on a GaAs substrate. And then the wafer with MHEMTs was divided into two pieces; one for passivation and another for without passivation experiments. The passivations were done by using both low-k BCB and Si3N4 thin films. DC and RF performances were measured and the results are compared. The MHEMTs with BCB passivation show lower degradation than ones with Si3N4 passivation.

Enhancement of photoluminescence and electrical properties of Ga doped ZnO thin film grown on $\alpha$-$Al_2O_3$(0001) single crystal substrate by RE magnetron sputtering through rapid thermal annealing (RF 마그네트론 스퍼터링 법으로 사파이어 기판 위에 성장시킨 ZnO: Ga 박막의 RTA 처리에 따른 photoluminescence 특성변화)

  • Cho, Jung;Na, Jong-Bum;Oh, Min-Seok;Yoon, Ki-Hyun;Jung, Hyung-Jin;Choi, Won-Guk
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.335-340
    • /
    • 2001
  • $Ga_2O_3$(1 wt%)-doped ZnO(GZO) thin films were grown on ${\alpha}-Al_2O_3$ (0001) by rf magnetron sputtering at $510^{\circ}C$, whose crystal structure was polycrystalline. As-grown GZO thin film shows poor electrical properties and photoluminescence (PL) spectra. To improve these properties, GZO thin films were annealed at 800-$900^{\circ}C$ in $N_2$atmosphere for 3 min. After the rapid thermal annealing(RTA), deep defect-level emission disappears and near-band emission is greatly enhanced. Annealed GZO thin films show very low resisitivity of $2.6\times10^{-4}\Omega$/cm with $3.9\times10^{20}/\textrm{cm}^3$ carrier concentration and exceptionally high mobility of 60 $\textrm{cm}^2$/V.s. These improved physical properties are explained in terms of translation of doped-Ga atoms from interstitial to substitutional site.

  • PDF

CHARACTERISTICS OF HETEROEPITAXIALLY GROWN $Y_2$O$_3$ FILMS BY r-ICB FOR VLSI

  • Choi, S.C.;Cho, M.H.;Whangbo, S.W.;Kim, M.S.;Whang, C.N.;Kang, S.B.;Lee, S.I.;Lee, M.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.809-815
    • /
    • 1996
  • $Y_2O_3$-based metal-insulator-semiconductor (MIS) structure on p-Si(100) has been studied. Films were prepared by UHV reactive ionized cluster beam deposition (r-ICBD) system. The base pressure of the system was about $1 \times 10^{-9}$ -9/ Torr and the process pressure $2 \times 10^{-5}$ Torr in oxygen ambience. Glancing X-ray diffraction(GXRD) and in-situ reflection high energy electron diffracton(RHEED) analyses were performed to investigate the crystallinity of the films. The results show phase change from amorphous state to crystalline one with increasingqr acceleration voltage and substrate temperature. It is also found that the phase transformation from $Y_2O_3$(111)//Si(100) to $Y_2O_3$(110)//Si(100) in growing directions takes place between $500^{\circ}C$ and $700^{\circ}C$. Especially as acceleration voltage is increased, preferentially oriented crystallinity was increased. Finally under the condition of above substrate temperature $700^{\circ}C$ and acceleration voltage 5kV, the $Y_2O_3$films are found to be grown epitaxially in direction of $Y_2O_3$(1l0)//Si(100) by observation of transmission electron microscope(TEM). Capacitance-voltage and current-voltage measurements were conducted to characterize Al/$Y_2O_3$/Si MIS structure with varying acceleration voltage and substrate temperature. Deposited $Y_2O_3$ films of thickness of nearly 300$\AA$ show that the breakdown field increases to 7~8MV /cm at the same conditon of epitaxial growing. These results also coincide with XPS spectra which indicate better stoichiometric characteristic in the condition of better crystalline one. After oxidation the breakdown field increases to 13MV /cm because the MIS structure contains interface silicon oxide of about 30$\AA$. In this case the dielectric constant of only $Y_2O_3$ layer is found to be $\in$15.6. These results have demonstrated the potential of using yttrium oxide for future VLSI/ULSI gate insulator applications.

  • PDF

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • Kim, Yun-Hak;Park, Sun-Mi;Gwon, Sun-Nam;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

Fabrication and Evaluation of a Flexible Piezoelectric Impact Force Sensor for Electronic Mitt Application (전자 미트 응용을 위한 유연 압전 충격 센서의 제조와 특성 평가)

  • Na, Yong-hyeon;Lee, Min-seon;Cho, Jeong-ho;Paik, Jong-hoo;Lee, Jung Woo;Park, Youngjun;Jeong, Young Hun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.106-112
    • /
    • 2019
  • Flexible impact force sensors composed of piezoelectric PZT/PDMS composite sandwiched between Al/PET films were fabricated and their voltage signal characteristics were evaluated under varying impact forces for electronic mitt applications. The piezoelectric impact force sensor on an ethylene-vinyl acetate (EVA) substrate exhibited an output voltage difference of no greater than 40 mV a periodical impact test in with the impact load was increased by as much as 240 N by a restoration time of 5 s in a five-time experiment, implying good sensing ability. Moreover, the impact force sensor embedded four electronic mitts showed a reliable sensitivity of less than 1 mV/N and good repeatability under 100 N-impact force during a cycle test executed 10,000 times. This indicated that the fabricated flexible piezoelectric impact sensor could be used in electronic mitt applications. However, the relatively low elastic limit of substrate material such as EVA or poly-urethane slightly deteriorated the sensitivity of the impact sensor embedded electronic mitt at over 200 N-impact forces.

Design and deposition of two-layer antireflection and antistatic coatings using a TiN thin film (TiN 박막을 이용한 2층 무반사 코팅의 설계 및 층착)

  • 황보창권
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.323-329
    • /
    • 2000
  • In this study we have calculated an ideal complex refractive index of a TiN trim used in a layer of anl1reilecnon (I\R) coatmg, [air$ISiO_2ITiNIglass$] in the visible. Also we simulated the rellectance of lwo-layer AR coating by varying the thicknesses of TiN and $SiO_2$ layers, respecl1vely. The simolation results show that we can controllhe lowest reflectance and AR band of tile AR coating. The TIN fihns were fabricated by a RF magnetron sputtering apparalus. The chemical, structural and electrical properties of TiN fih11S were inveshgated by the Rutherford backscattering spech'oscopy (RBS), atomic force microscope (AFM) and 4-point probe. The optical properlies were inve,tigated by the spectrophotometer and vanable angle spectroscopic ellipsometer (VASE). The smface roughness of TiN flhns \vas $9~10\AA$. TIle resistivity of TiN films was TEX>$360~730\mu$\Omega $ cm. The ,toichlOllletry of TiN film was 1'1: O:N = I: 0.65 :0.95 and ilic oxygen wa~ found on ilie smface. With these experimental and simu]al1on resulLs, we deposited duo: two-layer AR coating, [air$ISiO_2ITiNIglass$] and the refleClance was under 0.5% ill the regIOn of 440-650 run. 0 run.

  • PDF