• Title/Summary/Keyword: Al2O3-ZrO2

Search Result 500, Processing Time 0.025 seconds

Effect of Al2O3-ZrO2 Composite Oxide Thickness on Electrical Properties of Etched Al Foil

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.160-165
    • /
    • 2016
  • To increase the capacitance of an Al electrolytic capacitor, the anodic oxide film, $Al_2O_3$, was partly replaced by an $Al_2O_3-ZrO_2$ (Al-Zr) composite film prepared by the vacuum infiltration method and anodization. The microstructure and composition of the prepared samples were investigated by scanning electron microscopy and transmission electron microscopy. The coated and anodized samples showed multi-layer structures, which consisted of an inner Al hydrate layer, a middle Al-Zr composite layer, and an outer $Al_2O_3$ layer. The thickness of the coating layer could go up to 220 nm when the etched Al foil was coated 8 times. The electrical properties of the samples, such as specific capacitance, leakage current, and withstanding voltages, were also characterized after anodization at 100 V and 600 V. The capacitances of samples with $ZrO_2$ coating were 36.3% and 27.5% higher than those of samples without $ZrO_2$ coating when anodized at 100 V and 600 V, respectively.

Stacked High Voltage Al Electrolytic Capacitors Using Zr-Al-O Composite Oxide

  • Zhang, Kaiqiang;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.757-763
    • /
    • 2019
  • A stacked high-voltage (900 V) Al electrolytic capacitor made with ZrO2 coated anode foils, which has not been studied so far, is realized and the effects of Zr-Al-O composite layer on the electric properties are discussed. Etched Al foils coated with ZrO2 sol are anodized in 2-methyl-1,3-propanediol (MPD)-boric acid electrolyte. The anodized Al foils are assembled with stacked structure to prepare the capacitor. The capacitance and dissipation factor of the capacitor with ZrO2 coated anode foils increase by 41 % and decrease by 50 %, respectively, in comparison with those of Al anode foils. Zr-Al-O composite dielectric layer is formed between separate crystalline ZrO2 with high dielectric constant and amorphous Al2O3 with high ionic resistivity. This work suggests that the formation of a composite layer by coating valve metal oxide on etched Al foil surface and anodizing it in MPD-boric acid electrolyte is a promising approach for high voltage and volume efficiency of capacitors.

Synthesis and Sintering Behavior of Zr2WP2O12 Ceramics (Zr2WP2O12 세라믹스의 합성과 소결거동 연구)

  • Kim, Yong-Hyeon;Kim, Nam-Ok;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.586-591
    • /
    • 2012
  • $Zr_2WP_2O_{12}$ powder, which has a negative thermal expansion coefficient, was synthesized by a solid-state reaction with $ZrO_2$, $WO_3$ and $NH_4H_2PO_4$ as the starting materials. The synthesis behavior was dependent on the solvent media used in the wet mixing process. The $Zr_2WP_2O_{12}$ powder prepared with a solvent consisting of D. I. water was fully crystallized at $1200^{\circ}C$, showing a sub-micron particle size. According to the results obtained from a thermal analysis, a $ZrP_2O_7$ was synthesized at a low temperature of $310^{\circ}C$, after which it was reacted with $WO_3$ at $1200^{\circ}C$. A new sintering additive, $Al(OH)_3$, was applied for the densification of the $Zr_2WP_2O_{12}$ powders. The cold isostatically pressed samples were densified with 1 wt% $Al(OH)_3$ additive or more at $1200^{\circ}C$ for 4 h. The main densification mechanism was liquid-phase sintering due to the liquid which resulted from the reaction with amorphous or unstable $Al_2O_3$ and $WO_3$. The densified $Zr_2WP_2O_{12}$ ceramics showed a relative density of 90% and a negative thermal expansion coefficient of $-3.4{\times}10^{-6}/^{\circ}C$. When using ${\alpha}-Al_2O_3$ as the sintering agent, densification was not observed at $1200^{\circ}C$.

Effect of the Alloying Elements in Ag-Cu-Zr-X Brazing Alloy on the Microstructure and the Bond Strength of $Al_2O_3$/Ni-Cr Steel Brazed Joint (알루미나/니켈크롬강 접합체의 미세조직 및 접합강도에 미치는 Ag-Cu-Zr-X 브레이징 합금성분의 영향)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.465-473
    • /
    • 1998
  • The effect of alloying elements of Ag-Cu-Zr-X brazing alloy on the microstructure and the bond strength of $Al_2O_3/Ni-Cr$ brazed steel joint was investigated. The reaction layer, $ZrO_2$ (a=5.146 ${\AA}$ , b=5.213 ${\AA}$ , c=5.311 ${\AA}$ )was formed at the interface of $Al_2O_3/Ni-Cr$ steel joint by the redox reaction between alumina and Zr. The addition of An and Al to the Ag-Cu-Zr brazing alloy gave rise to changes in the thickness of the reaction product layer and the morphology of the brazement. Sn caused the segregation of Zr was decreased b Al the $ZrO_2$ layer formed at the Ag-Cu-Zr-Al alloy was thinner than that of $ZrO_2$ formed at the Ag-Cu-Zr-An alloy. The fracture shear strength was strongly dependent on the microstructure of the brazement. Brazing with Ag-Cu-Zr-Sn alloy resulted in a better bond strength than with Ag-Cu-Zr or Ag-Cu-Zr-Al alloy.

  • PDF

Improvement of Mechanical Strength of Porcelain Insulator with $ZrO_2$Addition ($ZrO_2$첨가에 따른 자기 애자의 기계적 강도 개선)

  • 최연규;송병기;안권옥;안용호;김상범;이동일
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.454-460
    • /
    • 2001
  • 장석, 석영, 점토와 17 wt% $Al_2$O$_3$를 함유한 알루미나질 자기 애자를 제조하였다. 분말을 ball milling으로 6시간 분쇄하였으며 성형체를 압출법으로 제조한 후 터널가마에서 130$0^{\circ}C$, 50분 동안 소결하였다. 터널가마에서 소결한 시편의 소결밀도는 이론밀도의 97%에 도달하였고, 3점 꺾임강도는 1658kgf/$ extrm{cm}^2$ 이었으며 ICL(indentation crack length) 방법으로 측정한 파괴인성은 2.3 MPa.m$^{1}$2/이었다. 기계적 성질을 향상시키기 위하여 ZrO$_2$를 첨가하여 15 wt% $Al_2$O$_3$-2 wt% ZrO$_2$와 12 wt% $Al_2$O$_3$-5 wt% ZrO$_2$를 복합체를 제조하였다. ZrO$_2$를 첨가한 시편의 꺾임강도는 1740kgf/$\textrm{cm}^2$이고 파괴인성은 2.4 MPa.m$^{1}$2/로 약 10% 기계적 성질이 향상되었다.

  • PDF

Oxidation of CrAlN and CrZrN Films (CrAlN과 CrZrN의 산화)

  • Kim, Min-Jeong;Kim, Seul-Gi;Lee, Sang-Yul;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.33-35
    • /
    • 2011
  • Films of CrAlN and CrZrN were deposited on a steel substrate by closed field unbalanced magnetron sputtering, and their oxidation behaviors were investigated. CrAlN films consisted of dense, polycrystalline CrN and AlN fine columns. The formed oxides consisted primarily of crystalline $Cr_2O_3$ incorporated with $Al_2O_3$. The oxide layers were thin and compact so as to make CrAlN films more protective than CrN films. In case of CrZrN films, Zr atoms were dissolved in the CrN phase. Zr atoms advantageously refined the columnar structure, reduced the surface roughness, and increased the micro-hardness. However, the addition of Zr did not increased oxidation resistance, mainly because Zr was not a protective element. All the deposited films displayed relatively good oxidation resistance, owing to the formation of the highly protective $Cr_2O_3$ on their surface. The $Cr_{40}Zr_9N$ and $Cr_{31}Zr_{16}N$ films oxidized to $Cr_2O_3$ as the major phase and ${\alpha}-ZrO_2$ as the minor one, whereas the CrN film oxidized to $Cr_2O_3$.

  • PDF

A Study on Fabrication of $Al_2O_3-ZrO_2$ Inorganic Membranes (알루미나-지르코니아 세라믹 막 제조에 관한 연구)

  • 김병훈;나용한
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1147-1161
    • /
    • 1995
  • When ceramic membrance was made from metal salt solution in place of metal akoxide solution, crack free and good adhesion to supporter was optimized for sol stability and good adhesion force. A starting sol was prepared from aluminum oxychloride aqueous solutjion in order to inhibit the grain growthof Al2O3 during heat treatment. The crack free dip coating can't be achieved in 1mol/ι zirconium oxychloride solution because of the high viscosity which interferes with the hydration copolymerization between Al3+ ion and Zr4+ ion. Thus Al2O3-ZrO2 sol stability and viscosity for dip coating was effective when 0.01 mol/ι zirconium oxychloride was added. The minimizing of crack and achieving better adhesion to the supporter wa obtained by microwave drying, surfactant addition and ultrasonic dip coating in wet atmosphere. The result seems to minimize the capillary force and improve the adhesive ability to supporter during the process. Where the average pore size of Al2O3-ZrO2 ultrafilter ceramic membrane measured 17 Å by the BET method and observed γ-Al2O3 phase with tetragonal zirconia after firing at 700℃.

  • PDF

Catalytic Behavior of Ni/CexZr1-xO2-Al2O3 Catalysts for Methane Steam Reforming: The CexZr1-xO2 Addition Effect on Water Activation (메탄 습식 개질 반응용 Ni/CexZr1-xO2-Al2O3 촉매의 반응 특성: CexZr1-xO2 첨가에 의한 물 활성화 효과)

  • Haewon Jung;Huy Nguyen-Phu;Mingyan Wang;Sang Yoon Kim;Eun Woo Shin
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.479-486
    • /
    • 2023
  • In this study, we investigated the effect of the CexZr1-xO2 (CZ) addition onto Ni/Al2O3 catalysts on the catalytic performance in methane steam reforming. In the reaction results, the CZ-added Ni/Al2O3 catalyst showed higher CH4 conversion and H2 yield under the same reaction conditions than Ni/Al2O3. From the characterization data, the two catalysts had similar support porosity and Ni dispersion, confirming that the two properties could not determine the catalytic performance. However, the oxygen vacancy over the CZ-added Ni/Al2O3 catalyst induced an efficient steam activation at low reaction temperatures, resulting in an increase in the catalytic activity and H2 yield.