DOI QR코드

DOI QR Code

Catalytic Behavior of Ni/CexZr1-xO2-Al2O3 Catalysts for Methane Steam Reforming: The CexZr1-xO2 Addition Effect on Water Activation

메탄 습식 개질 반응용 Ni/CexZr1-xO2-Al2O3 촉매의 반응 특성: CexZr1-xO2 첨가에 의한 물 활성화 효과

  • Haewon Jung (School of Chemical Engineering, University of Ulsan) ;
  • Huy Nguyen-Phu (School of Chemical Engineering, University of Ulsan) ;
  • Mingyan Wang (School of Chemical Engineering, University of Ulsan) ;
  • Sang Yoon Kim (School of Chemical Engineering, University of Ulsan) ;
  • Eun Woo Shin (School of Chemical Engineering, University of Ulsan)
  • Received : 2023.07.04
  • Accepted : 2023.07.11
  • Published : 2023.08.01

Abstract

In this study, we investigated the effect of the CexZr1-xO2 (CZ) addition onto Ni/Al2O3 catalysts on the catalytic performance in methane steam reforming. In the reaction results, the CZ-added Ni/Al2O3 catalyst showed higher CH4 conversion and H2 yield under the same reaction conditions than Ni/Al2O3. From the characterization data, the two catalysts had similar support porosity and Ni dispersion, confirming that the two properties could not determine the catalytic performance. However, the oxygen vacancy over the CZ-added Ni/Al2O3 catalyst induced an efficient steam activation at low reaction temperatures, resulting in an increase in the catalytic activity and H2 yield.

본 연구에서는 메탄 습식 개질 반응용 Ni/Al2O3 촉매에 첨가된 CexZr1-xO2(CZ)가 촉매 반응 효율에 미치는 효과를 조사하였다. 반응 실험 결과, CZ 조촉매가 첨가된 Ni/Al2O3 촉매는 동일 온도, 동일 steam to carbon ratio에서 Ni/Al2O3 촉매보다 높은 메탄 전환율과 수소 수율을 보였다. 특성 분석 결과, 두 촉매 모두 유사한 기공 구조와 비슷한 Ni 분산도를 가지고 있어 이는 반응 효율에 영향을 미치는 요소가 아님을 확인하였다. 하지만, 라만 분광 분석결과에서 CZ 조촉매 첨가 Ni/Al2O3 촉매는 Ni/Al2O3 촉매와 달리 CZ상에서 oxygen vacancy가 존재하고, 이는 상대적으로 낮은 반응 온도에서 물 활성화를 촉진시키는 것으로 확인되었다. CZ 조촉매 상의 oxygen vacancy에 의한 물 활성화는 저온 영역에서 CZ 조촉매 첨가 Ni/Al2O3 촉매의 습식 개질 반응 성능을 증대시켰다.

Keywords

Acknowledgement

본 연구는 한국연구재단 기초연구실 사업(2020R1A4A4079954)과 지자체-대학협력기반 지역혁신 사업(울산·경남지역혁신플랫폼 저탄소그린에너지, 2021RIS-003)의 지원을 받아 이루어졌습니다.

References

  1. Meloni, E., Martino, M. and Palma, V., "A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming," Catalysts, 10(3), 352-390(2020). https://doi.org/10.3390/catal10030352
  2. Yoo, J., Park, S., Song, J. H., Yoo, S. and Song, I. K., "Hydrogen Production by Steam Reforming of Natural Gas Over Butyric Acid-assisted Nickel/alumina Catalyst," International Journal of Hydrogen Energy, 42(47), 28377-28385(2017). https://doi.org/10.1016/j.ijhydene.2017.09.148
  3. Iglesias, I., Baronetti, G. and Marino, F., "Ni/Ce0.95M0.05O2-d (M = Zr, Pr, La) for Methane Steam Reforming at Mild Conditions," International Journal of Hydrogen Energy, 42(50), 29735-29744(2017). https://doi.org/10.1016/j.ijhydene.2017.09.176
  4. Li, D., Zeng, L., Li, X., Wang, X., Ma, H., Assabumrungrat, S. and Gong, J., "Ceria-promoted Ni/SBA-15 Catalysts for Ethanol Steam Reforming with Enhanced Activity and resistance to deactivation," Applied Catalysis B: Environmental, 176-177, 532-541(2015). https://doi.org/10.1016/j.apcatb.2015.04.020
  5. Ogo, S. and Sekine, Y., "Recent Progress in Ethanol Steam Reforming Using Non-noble Transition Metal Catalysts: A Review," Fuel Processing Technology, 199, 106238-106249(2020). https://doi.org/10.1016/j.fuproc.2019.106238
  6. Lertwittayanon, K., Youravong, W. and Lau, W. J., "Enhanced Catalytic Performance of Ni/α-Al2O3 Catalyst Modified with CaZrO3 Nanoparticles in Steam-methane Reforming," International Journal of Hydrogen Energy, 42(47), 28254-28265(2017). https://doi.org/10.1016/j.ijhydene.2017.09.030
  7. Wang, W., Wang, H., Yang, Y. and Jiang, S., "Ni-SiO2 and Ni-Fe-SiO2 Catalysts for Methane Decomposition to Prepare Hydrogen and Carbon Filaments," International Journal of Hydrogen Energy, 37(11), 9058-9066(2012). https://doi.org/10.1016/j.ijhydene.2012.03.003
  8. Lertwittayanon, K., Atong, D., Aungkavattana, P., Wasanapiarnpong, T., Wada, S. and Sricharoenchaikul, V., "Effect of CaO-ZrO2 Addition to Ni Supported on γ-Al2O3 by Sequential Impregnation in Steam Methane Reforming," International Journal of Hydrogen Energy, 35(22), 12277-12285(2010). https://doi.org/10.1016/j.ijhydene.2010.08.098
  9. Roh, H., Eum, I. and Jeong, D., "Low Temperature Steam Reforming of Methane over Ni-Ce(1-x)Zr(x)O2 Catalysts Under Severe Conditions," Renewable Energy, 42, 212-216(2012). https://doi.org/10.1016/j.renene.2011.08.013
  10. Iglesias, I., Baronetti, G., Alemany, L. and Marino, F., "Insight into Ni/Ce1-xZrxO2-δ Support Interplay for Enhanced Methane Steam Reforming," International Journal of Hydrogen Energy, 44(7), 3668-3680(2019). https://doi.org/10.1016/j.ijhydene.2018.12.112
  11. Kusakabe, K., Sotowa, K., Eda, T. amd Iwamoto, Y., "Methane Steam Reforming over Ce-ZrO2-supported Noble Metal Catalysts at Low Temperature," Fuel Processing Technology, 86(3), 319-326(2004). https://doi.org/10.1016/j.fuproc.2004.05.003
  12. Pompeo, F., Gazzoli, D. and Nichio, N. N., "Stability Improvements of Ni/α-Al2O3 Catalysts to Obtain Hydrogen from Methane Reforming," International Journal of Hydrogen Energy, 34(5), 2260-2268(2009). https://doi.org/10.1016/j.ijhydene.2008.12.057
  13. Escritori, J. C., Dantas, S. C., Soares, R. R. and Hori, C. E., "Methane Autothermal Reforming on Nickel-ceria-zirconia Based Catalysts," Catalysis Communications, 10(7), 1090-1094(2009). https://doi.org/10.1016/j.catcom.2009.01.001
  14. Zheng, Y., Li, K., Wang, H., Zhu, X., Wei, Y., Zheng, M. and Wang, Y., "Enhanced Activity of CeO2-ZrO2 Solid Solutions for Chemical-Looping Reforming of Methane via Tuning the Macroporous Structure," Energy & Fuels, 30(1), 638-647(2015).
  15. Do, L. T., Nguyen-Huy, C. and Shin, E. W., "NiK/yCexZr1-xO2-macroporous Al2O3 Catalysts for Cracking of Vacuum Residual oil with Steam," Applied Catalysis A: General, 525, 23-30(2016). https://doi.org/10.1016/j.apcata.2016.07.005
  16. Halabi, M., Croon, M. D., Schaaf, J. V., Cobden, P. and Schouten, J., "Low Temperature Catalytic Methane Steam Reforming over Ceria-zirconia Supported Rhodium," Applied Catalysis A: General, 389(1-2), 68-79(2010). https://doi.org/10.1016/j.apcata.2010.09.004
  17. Salcedo, A., Lustemberg, P. G., Rui, N., Palomino, R. M., Liu, Z., Nemsak, S., Senanayake, S. D., Rodriguez, J. A., Ganduglia-Pirovano, M. and Irigoyen, B., "Reaction Pathway for Coke-Free Methane Steam Reforming on a Ni/CeO2 Catalyst: Active Sites and the Role of Metal-Support Interactions," ACS Catalysis, 11(13), 8327-8337(2021). https://doi.org/10.1021/acscatal.1c01604
  18. Ochoa, A., Bilbao, J., Gayubo, A. G. and Castano, P., "Coke Formation and Deactivation During Catalytic Reforming of Biomass and Waste Pyrolysis Products: A Review," Renewable and Sustainable Energy Reviews, 119, 109600-109629(2020). https://doi.org/10.1016/j.rser.2019.109600
  19. Ashok, J., Wai, M. H. and Kawi, S., "Nickel-based Catalysts for High-temperature Water Gas Shift Reaction-Methane Suppression," ChemCatChem, 10(18), 3927-3942(2018). https://doi.org/10.1002/cctc.201800031
  20. Chen, L., Qi, Z., Zhang, S., Su, J. and Somorjai, G. A., "Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect," Catalysts, 10(8), 858-876(2020). https://doi.org/10.3390/catal10080858
  21. Toledo, R. R., Sanchez, M. B., Porras, G. R., Ramirez, R. F., Larios, A. P., Ramirez A. M. and Rosales, M. M., "Effect of Mg as Impurity on the Structure of Mesoporous γ-Al2O3: Efficiency as Catalytic Support in HDS of DBT," International Journal of Chemical Reactor Engineering, 1-16(2018).
  22. Pu, J., Luo, Y., Wang, N., Bao, H., Wang, X. and Qian, E. W., "Ceria-promoted Ni@Al2O3 Core-shell Catalyst for Steam Reforming of Acetic Acid with Enhanced Activity and Coke Resistance," International Journal of Hydrogen Energy, 43(6), 3142-3153(2018). https://doi.org/10.1016/j.ijhydene.2017.12.136
  23. Wang, J., Li, Z., Zhang, S., Yan, S., Cao, B., Wang, Z. and Fu, Y., "Enhanced NH3 Gas-sensing Performance of Silica Modified CeO2 Nanostructure Based Sensors," Sensors and Actuators B: Chemical, 255, 862-870(2018). https://doi.org/10.1016/j.snb.2017.08.149
  24. Zhao, X., Xue, Y., Yan, C., Huang, Y., Lu, Z., Wang, Z., Zhang, L. and Guo, C., "Promoted Activity of Porous Silica Coated Ni/CeO2ZrO2 Catalyst for Steam Reforming of Acetic Acid," International Journal of Hydrogen Energy, 42(34), 21677-21685(2017). https://doi.org/10.1016/j.ijhydene.2017.07.086
  25. Roh, H., Potdar, H. and Jun, K., "Carbon Dioxide Reforming of Methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce-ZrO2 Catalysts," Catalysis Today, 93-95, 39-44(2004). https://doi.org/10.1016/j.cattod.2004.05.012
  26. Zhang, J., Xu, H., Jin, X., Ge, Q. and Li, W., "Characterizations and Activities of the Nano-sized Ni/Al2O3 and Ni/La-Al2O3 Catalysts for NH3 Decomposition," Applied Catalysis A: General, 290(12), 87-96(2005). https://doi.org/10.1016/j.apcata.2005.05.020
  27. Jimenez-Gonzalez, C., Boukha, Z., Rivas, B. D., Gonzalez-Velasco, J. R., Gutierrez-Ortiz, J. I. and Lopez-Fonseca, R., "Behavior of Coprecipitated NiAl2O4/Al2O3 Catalysts for Low-Temperature Methane Steam Reforming," Energy & Fuels, 28(11), 7109-7121(2014). https://doi.org/10.1021/ef501612y
  28. Zheng, W., Zhang, J., Ge, Q., Xu, H. and Li, W., "Effects of CeO2 Addition on Ni/Al2O3 Catalysts for the Reaction of Ammonia Decomposition to Hydrogen," Applied Catalysis B: Environmental 80(1-2), 98-105(2008). https://doi.org/10.1016/j.apcatb.2007.11.008
  29. Alothman, Z., "A Review: Fundamental Aspects of Silicate Mesoporous Materials," Materials, 5(12), 2874-2902(2012). https://doi.org/10.3390/ma5122874
  30. Marinho, A. L., Rabelo-Neto, R. C., Epron, F., Bion, N., Toniolo, F. S. and Norhonha, F. B, "Embedded Ni Nanoparticles in CeZrO2 as Stable Catalyst for Dry Reforming of Methane," Applied Catalysis B: Environmental, 268, 118387-118404(2020). https://doi.org/10.1016/j.apcatb.2019.118387
  31. Zheng, Y., Li, K., Wang, H., Zhu, X., Wei, Y., Zheng, M. and Wang, Y., "Enhanced Activity of CeO2-ZrO2 Solid Solutions for Chemical-Looping Reforming of Methane via Tuning the Macroporous Structure," Energy & Fuels, 30(1), 638-647(2015).