• 제목/요약/키워드: Al-based metallic glass

검색결과 22건 처리시간 0.021초

Al계 초소성합금과 Zr계 비정질합금의 마이크로 진동성형에 관한 연구 (A Study on the Micro Vibration Forming of Al-based Superplastic Alloy and Zr-based Bulk Metallic Glass)

  • 손선천;박규열;나영상
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.193-200
    • /
    • 2007
  • Micro forming is a suited technology to manufacture very small metallic parts(several $mm{\sim}{\mu}m$). Al5083 superplastic alloy with very small grains has a great advantage in achieving micro deformation under low stress due to its relatively low strength at a specific high temperature range. Micro forming of $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG) as a candidate material for this developing process are feasible at a relatively low stress in the supercooled liquid state without any crystallization during hot deformation. In this study, the micro formability of Al5083 superplastic alloy and bulk metallic glass, $Zr_{62}Cu_{17}Ni_{13}Al_8$, was investigated with the specially designed micro vibration forming system using pyramid-shape, V-shape and U-shape micro die pattern. With these dies, micro vibration forming was conducted by varying the applied load, time. Micro formability was estimated by comparing the hight of formed shape using non-contact surface profiler system. The vibration load effect to metal flow in the micro die and improve the micro formability of Al5083 superplastic alloy and $Zr_{62}Cu_{17}Ni_{13}Al_8$ bulk Metallic glass(BMG).

$Zr_{55}Cu_{30}Al_{10}Ni_{5}$ 벌크 유리상 금속 변형거동의 변형률속도 의존성 (Strain Rate Dependency of Deformation Behavior in $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ Bulk Metallic Glass)

  • 신형섭;정영진;고동균;오상엽
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1145-1150
    • /
    • 2003
  • Zr-based bulk metallic glasses have a significant mechanical properties such as high strength and elastic strain limit, and a good processing ability due to the deformation behavior such as superplasticity under supercooled liquid region. Recently, many researches on the determination of optimum working condition in various bulk metallic glasses have been carried out. In this study, the deformation behavior and forming conditions of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass were investigated under three different strain rates and at various temperatures between 627K and 727K. The glass transition temperature, crystallization temperature and supercooled liquid region of $Zr_{55}Cu_{30}Al_{10}Ni_{5}$ bulk metallic glass are 680K, 762K and 82K, respectively.

  • PDF

고온에서 $Zr_{55}Al_{10}Ni_5Cu_{30}$ 벌크 유리금속의 변형거동 (Deformation Behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ Bulk Metallic Glass at High Temperatures)

  • 정영진;김기현;오상엽;신형섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.342-347
    • /
    • 2004
  • The deformation behavior of a $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass under tensile loading at different range of strain rates and temperatures between 680 K and 740 K were investigated. The variation in the deformation behavior of $Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass which resulted from the crystallization induced during testing was reported. The$Zr_{55}Al_{10}Ni_5Cu_{30}$ bulk metallic glass has showed either homogeneous or inhomogeneous deformation depending on test condition. It exhibited a maximum elongation of about 560 % at the condition of $407^{\circ}C{\times}\;10^{-4}/s$. The flow behavior exhibited three different types and the flow stress became lower at higher temperatures and lower strain rates. The increase of the time elapsed during heating resulted in the partial crystallization of bulk metallic glass phase and eventually strain hardening and brittle fracture.

  • PDF

Characterization of the Oxide Layer Formed on the Cu-Zr Based Metallic Glass during Continuous Heating

  • Lim, Ka-Ram;Kim, Won-Tae;Kim, Do-Hyang
    • Applied Microscopy
    • /
    • 제42권3호
    • /
    • pp.174-178
    • /
    • 2012
  • In the present study, the oxidation behavior of $Cu_{50}Zr_{50}$ and $Cu_{46}Zr_{46}Al_8$ metallic glasses has been investigated using transmission electron microscopy with a particular attention on the oxidation behavior in the supercooled liquid state. Identification of the oxidation product after continuous heating treatment shows that in $Cu_{50}Zr_{50}$ metallic glass, $ZrO_2$ with the monoclinic structure forms on the supercooled liquid as well as on the crystallized matrix. On the contrary, in $Cu_{46}Zr_{46}Al_8$ metallic glass, $ZrO_2$ with the tetragonal structure forms on the supercooled liquid, but that with the monoclinic structure forms on the crystallized matrix. The result indicates that the $Cu_{50}Zr_{50}$ metallic glass exhibits far better oxidation resistance in the supercooled liquid state than the $Cu_{46}Zr_{46}Al_8$ metallic glass.

Magnetization Processes in Partially Crystallized Co-Based Metallic Glass

  • Lachowicz, H.K.;Poplawsi, F.;Zuberek, R.;Kuzminski, M.;Slawska-Waniewska, A.;Dynowska, E.;Yu, S.C.
    • Journal of Magnetics
    • /
    • 제4권3호
    • /
    • pp.84-87
    • /
    • 1999
  • It is shown that progressive crystallization of non-magnetostrictive Co-based metallic glass (VITROVAC 6030) leads to an increase of coercivity by more than three orders of magnitude. The mechani는 responsible for this phenomenon are interpreted showing that the main source for the giant increase of the coercivity is the pinning effect on the domain walls originating from the created crystallites of the size much smaller than the domain width (correlation length for ferromagnetic exchange interactions). It is also shown that gradually devitrified non-magnetostrictive metallic glass is an excellent model material for verification of N el's theory describing the Rayleigh rule.

  • PDF

Zr-Nb-Cu-Ni-Al 비정질 복합 재료의 변형거동과 성형성 (Room and High Temperature Deformation Behaviors and Estimation on Formability of Zr-based Bulk Metallic Glass Composite)

  • 전현준;이광석;;;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.199-202
    • /
    • 2008
  • In this study, we investigated the thermal properties of $Zr_{66.4}Nb_{6.4}Cu_{10.5}Ni_{8.7}Al_{8.0}$ by using a differential scanning calorimeter (DSC), and then analyzed the composition of dendrite phase by using X-ray diffraction (XRD). A series of uniaxial compression tests has been performed under the strain rates between $10^{-5}/s$ and $10^{-2}/s$ at room temperature and near SLR. This BMGC has higher high temperature strength than other Zr-based monolithic BMGs because in-situ formed crystalline phases hinder a feasible viscous flow of amorphous matrix. Warm formability is also estimated by laboratory-scale extrusion test within supercooled liquid region. It was found that BMGC has poor formability compared with nother Zr-based bulk metallic glass composite presumably due to large volume fraction of 'brittle' crystalline phases distributed within amorphous matrix.

  • PDF

기계적 합금화 공정에 의한 Hf계 비정질 분말의 미세변형거동 관찰 (Micro-deformation behavior of Brittle Hf-based Metallic Glass during Mechanical Milling)

  • 김송이;이아영;차은지;권도훈;홍성욱;이민우;김휘준;이민하
    • 한국분말재료학회지
    • /
    • 제25권3호
    • /
    • pp.246-250
    • /
    • 2018
  • In this study, we investigate the deformation behavior of $Hf_{44.5}Cu_{27}Ni_{13.5}Nb_5Al_{10}$ metallic glass powder under repeated compressive strain during mechanical milling. High-density (11.0 g/cc) Hf-based metallic glass powders are prepared using a gas atomization process. The relationship between the mechanical alloying time and microstructural change under phase transformation is evaluated for crystallization of the amorphous phase. Planetary mechanical milling is performed for 0, 40, or 90 h at 100 rpm. The amorphous structure of the Hf-based metallic glass powders during mechanical milling is analyzed using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Microstructural analysis of the Hf-based metallic glass powder deformed using mechanical milling reveals a layered structure with vein patterns at the fracture surface, which is observed in the fracture of bulk metallic glasses. We also study the crystallization behavior and the phase and microstructure transformations under isothermal heat treatment of the Hf-based metallic glass.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

분쇄 공정의 온도와 분산제 사용이 알루미늄계 금속유리의 결정화에 미치는 영향 (Effect of Temperature and Surfactant on Crystallization of Al-Based Metallic Glass during Pulverization)

  • 김태양;임채윤;김석준
    • 한국재료학회지
    • /
    • 제33권2호
    • /
    • pp.63-70
    • /
    • 2023
  • In this study, crystallization was effectively suppressed in Al-based metallic glasses (Al-MGs) during pulverization by cryo-milling by applying an extremely low processing temperature and using a surfactant. Before Al-MGs can be used as an additive in Ag paste for solar cells, the particle sizes of the Al-MGs must be reduced by milling. However, during the ball milling process crystallization of the Al-MG is a problem. Once the Al-MG is crystallized, they no longer exhibit glass-like behavior, such as thermoplastic deformation, which is critical to decrease the electrical resistance of the Ag electrode. The main reason for crystallization during the ball milling process is the heat generated by collisions between the particles and the balls, or between the particles. Once the heat reaches the crystallization temperature of the Al-MGs, they start crystallization. Another reason for the crystallization is agglomeration of the particles. If the initially fed particles become severely agglomerated, they coalesce instead of being pulverized during the milling. The coalesced particles experience more collisions and finally crystallize. In this study, the heat generated during milling was suppressed by using cryo-milling with liquid-nitrogen, which was regularly fed into the milling jar. Also, the MG powders were dispersed using a surfactant before milling, so that the problem of agglomeration was resolved. Cryo-milling with the surfactant led to D50 = 10 um after 6 h milling, and we finally achieved a specific contact resistance of 0.22 mΩcm2 and electrical resistivity of 2.81 μΩcm using the milled MG particles.

Zr 계 비정질 합금의 고온 변형거동과 성형성 예측 (High Temperature Deformation Behavior and Formability of Zr-Cu-Al-Ni Bulk Metallic Glass)

  • 전현준;이광석;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.123-126
    • /
    • 2007
  • Deformation behavior of $Zr_{55}Cu_{30}Al_{10}Ni_5$ (at. %) bulk metallic glass (BMG) fabricated by suction casting method has been investigated at elevated temperatures in this study. The BMG was first verified to have an amorphous structure thru X-ray diffraction (XRD) and differential scanning calorimetry (DSC). A series of compression tests has consequently been performed in supercooled liquid temperature region to investigate the high temperature deformation behavior. A transition from Newtonian to non-Newtonian flow appeared to take place depending upon both the strain rate and test temperature. A processing map based on a dynamic materials model has been constructed to estimate a feasible forming condition for this BMG alloy.

  • PDF