• 제목/요약/키워드: Al-Si casting alloys

검색결과 106건 처리시간 0.025초

전자교반식 수평연속주조법에 의한 반응고 Al 합금의 제조에 관한 연구 (A Study on the Fabrication of Semi-solid Al Alloys by EMS Horizontal Continuous Casting Process)

  • 박기범;송영배;김영환;김경헌;김인배
    • 한국재료학회지
    • /
    • 제10권2호
    • /
    • pp.117-123
    • /
    • 2000
  • 본 연구에서는 반응고 Al합금을 얻기 위해서 3상 2극의 전자교반장치를 이용하였으며, 주입온도와 주입전압을 변화시켜 Al합금의 초정입자크기, aspect ratio, 표준편차, 경도 및 공정 Si 입자의 크기 및 형상 변화를 조사하였다. 같은 주입온도에서는 주입전압이 증가함에 따라 aspect ratio, 표준편차 및 초정입자의 크기는 감소되었다. 전자교반식 수평연속주조방법에 의한 Al 합금의 최적제조 조건은 주입전압 220V, 주입온도 68$0^{\circ}C$이었으며, 이 조건에서 초정입자의 크기는 54$\mu\textrm{m}$이었고, aspect ratio는 1.56이었으며 그 표준편차는 0.4이었다. 그리고 공정 Si의 크기는 0.5$\mu\textrm{m}$이었으며 제조된 Al합금의 경도는 72.1 Hv를 나타내었다. 본 연구를 위해 제작된 3상 2극 전자교반장치에 의해서 매우 낮은 aspect ratio 및 표준편자를 갖는 반응고 A356 Al합금을 제조할 수 있었다.

  • PDF

원심주조를 이용한 2종 알루미늄의 접합에 대한 연구 (A Study on the Joining of Different Al Alloys by Centrifugal Casting)

  • 장영수;이문형;문준영;홍준표
    • 한국주조공학회지
    • /
    • 제27권6호
    • /
    • pp.237-242
    • /
    • 2007
  • To improve the quality of the product and the cost efficiency, the joining of A356 alloy to an Al-18wt%Si alloys has been performed by centrifugal casting. The influence of the mold preheating temperature, the pouring temperature and the rotational velocity of the mold on the microstructures of the shell in the centrifugal casting was investigated using the experimental and simulation methods. In the present study, the cellular automaton (CA) technique and the finite volume method (FVM) were adopted to simulate the evolution of the macro structures and to calculate the temperature profiles, respectively. The evolution of the microstructures was also simulated using a modified cellular automaton (MCA) model. The optimal rotational speed of the mold for obtaining the sound shape of the shell was estimated experimentally to be over 1200 rpm. For the uniform microstructure, the outer shell needs to be cast with higher preheated mold temperature and lower pouring temperature, and the melt was poured at lower temperature in the inner shell. In order to obtain the sound shape of the joining, the different materials were poured simultaneously.

Al-Mg-Si 합금에서 Cu 첨가와 자연시효 열처리가 열확산도에 미치는 영향 (Effect of Additional Cu and Natural Aging Treatment on Thermal Diffusivity in the Al-Mg-Si Alloy)

  • 김유미;최세원
    • 한국주조공학회지
    • /
    • 제41권6호
    • /
    • pp.528-534
    • /
    • 2021
  • 본 연구는 Al-Mg-Si 합금에서 Cu가 첨가 후 자연시효와 인공시효에 따른 제2상 석출 반응이 합금의 열확산도 및 경도에 미치는 영향을 연구하였다. 연구에 사용된 Al-0.4Mg-0.2Si 합금과 Cu를 0.6 wt%, 1.0wt% 추가한 Al-Mg-Si-Cu 합금을 각각 중력 주조로 제작하고 열확산도 경도를 측정하고 석출 반응을 확인하기 위해 열량 분석을 실시 하였다. Al-Mg-Si 합금에 첨가된 Cu는 Q'상 및 θ'상과 같은 강화상 형성에 참여하여 합금의 경도와 고온 열확산도를 향상시켰다. 한편, 자연시효 시간 증가는 Al-Mg-Si-Cu 합금의 열확산도에는 큰 영향을 미치지 않았으나, 경도를 하락시키는 것으로 확인되었다.

고압 다이캐스팅용 알루미늄 합금의 열전도성 및 주조성에 미치는 첨가원소의 영향 (Effect of Alloying Elements on the Thermal Conductivity and Casting Characteristics of Aluminum Alloys in High Pressure Die Casting)

  • 김철우;김영찬;김정한;조재익;오민석
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.805-812
    • /
    • 2018
  • High pressure die casting is one of the precision casting methods. It is highly productivity and suitable for manufacturing components with complex shapes and accurate dimensions. Recently, there has been increasing demand for efficient heat dissipation components, to control the heat generated by devices, which directly affects the efficiency and life of the product. Die cast aluminum alloys with high thermal conductivity are especially needed for this application. In this study, the influence of elements added to the die cast aluminum alloy on its thermal conductivity was evaluated. The results showed that Mn remarkably deteriorated the thermal conductivity of the aluminum alloy. When Cu content was increased, the tensile strength of cast aluminum alloy increased, showing 1 wt% of Cu ensured the minimum mechanical properties of the cast aluminum. As Si content increased, the flow length of the alloy proportionally increased. The flow length of aluminum alloy containing 2 wt% Si was about 85% of that of the ALDC12 alloy. A heat dissipation component was successfully fabricated using an optimized composition of Al-1 wt%Cu-0.6 wt%Fe-2 wt%Si die casting alloy without surface cracks, which were turned out as intergranular cracking originated from the solidification contraction of the alloy with Si composition lower than 2 wt%.

고압 금형 주조용 Al-4%Mg-0.9%Si 합금의 주조특성에 미치는 Fe, Mn 함량의 영향 (Effect of Fe, Mn Content on the Castability of Al-4%Mg-0.9%Si Alloys for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제33권2호
    • /
    • pp.55-62
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-4wt%Mg-0.9wt%Si system alloy has been studied. According to the analysis of cooling curve for Al-4wt%Mg-0.9wt%Si-0.3wt%Fe-0.3/0.5wt%Mn alloy, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}-Al_5FeSi$ phases crystallized above eutectic temperature of $Mg_2Si$. Therefore, these phases affected both the fluidity and shrinkage behaviors of the alloy during solidification. As Fe and Mn contents of Al-4wt%Mg-0.9wt%Si system alloy increased from 0.1 wt% to 0.4 wt% and from 0.3 wt% to 0.5 wt% respectively, the fluidity of the alloy decreased by 26% and 33%. When Fe content of the alloy increased from 0.1 wt% to 0.4 wt%, 23% decrease of macro shrinkage and 19% increase of micro shrinkage appeared. Similarly, Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, 11% decrease of macro shrinkage and 14% increase of micro shrinkage appeared. Judging from the castability of the alloy, Al-4wt%Mg-0.9wt%Si alloy with low content of Fe and Mn, 0.1 wt% Fe and 0.3 wt% Mn, is recommendable.

Al-Si-Mg-Cu 합금계의 열간 균열 특성 평가방법에 관한 연구 (Evaluation of Hot Tear Susceptibility of Al-Si-Mg-Cu Alloy System)

  • 손광석;박태은;김진수;강성민;김동규
    • 대한금속재료학회지
    • /
    • 제48권5호
    • /
    • pp.436-444
    • /
    • 2010
  • The hot tear susceptibility of Al alloys was investigated by using a constrained-rod mold designed to quantify 8 types of tear tendency. The severity of the crack was scored by 5 grades on a scale of 0 to 4, with 0 being "no crack formed" and 4 being "complete separation by crack". The Hot Tear Susceptibility index (HTS) which consists of crack type scores and position scores, was proposed to compare the hot tear tendency of Al alloys. A356.0 cast alloy and AA6061 wrought Al alloy showed an HTS value of 27.5 and 53 respectively. The effects of Si, Cu, and Mg content on hot tear tendency were also investigated with a constrained-rod mold. The variation of HTS values with alloying elements represents similar behavior in the variation of the solidification range in a pseudo binary phase diagram.

SKD61 금형강의 소착 반응층 두께에 미치는 Al-9wt%Si-0.3wt%Mg 합금의 Fe, Mn 영향 (Effect of Fe, Mn Contents of Al-9wt%Si-0.3wt%Mg Alloys on the Thickness of Die Soldering Reaction Layer for SKD61 Die Steel)

  • 김헌주;조치만;정창렬
    • 한국주조공학회지
    • /
    • 제29권4호
    • /
    • pp.169-175
    • /
    • 2009
  • Effect of iron and manganese contents on die soldering reaction has been studied in Al-9wt.%Si-0.3wt.%Mg alloy. Ternary ${\alpha}_{hcp}-Al_8Fe_2Si$ and ${\alpha}_{bcc}-Al_8Fe_2Si$ intermetallic compounds formed by interaction diffusion between Al-Si-Mg system alloy melt and SKD61 die steel surface. Thickness of soldering reaction layer in die steel surface decreased as Fe and Mn contents of the melts increased : When Fe content of Al-9wt.%Si-0.3wt.%Mg melts at constant 0.5wt%Mn content was 0.15wt.%, 0.45wt.% and 0.6wt.%, thickness of soldered layer of each alloy was $64.5{\mu}m,\;57.3{\mu}m$ and $46.9{\mu}m$ respectively. For Mn content of the alloy melts at constant 0.45wt.%Fe content was 0.30wt.%, 0.50wt.% and 0.70wt.%, thickness of soldered layer of each alloy was $66.1{\mu}m,\;57.3{\mu}m$ and $48.3{\mu}m$ respectively.

Formation of Anodic Films on Pure Mg and Mg alloys for Corrosion Protection

  • Moon, Sungmo;Nam, Yunkyung
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.16-16
    • /
    • 2012
  • Mg and its alloys have been of great interest because of their low density of 1.7, 30% lighter than Al, but their wide applications have been limited because of their poor resistances against corrosion and/or abrasion. Corrosion resistance of Mg alloys can be improved by formation of anodic films using anodic oxidation method in aqueous electrolytes. Plasma electrolytic oxidation (PEO) is one of anodic oxidation methods by which hard anodic films can be formed as a result of micro-arc generation under high electric field. PEO method utilize not only substrate elements but also chemical components in electrolytes to form anodic films on Mg alloys. PEO films formed on AM50 magnesium alloy in an acidic fluozirconate electrolyte were observed to consist of mainly $ZrO_2$ and $MgF_2$. Liu et al reported that PEO coating on AM30 Mg alloy consists of $MgF_2$-rich outer porous layer and an MgO-rich dense inner layer. PEO films prepared on ACM522 Mg die-casting alloy in an aqueous phosphate solution were also reported to be composed of monoclinic $Mg_3(PO_4)_2$. $CeO_2$-incorporated PEO coatings were also reported to be formed on AZ31 Mg alloys in $CeO_2$ particle-containing $Na_2SiO_3$-based electrolytes. Magnesium tin hydroxide ($MgSn(OH)_6$) was also produced on AZ91D alloy by PEO process in stannate-containing electrolyte. Effects of $OH^-$, $F^-$, $PO{_4}^{3-}$ and $SiO{_3}^{2-}$ ions and alloying elements of Al and Sn on the formation of PEO films on pure Mg and Mg alloys and their protective properties against corrosion have been investigated in this work. $PO{_4}^{3-}$, $F^-$ and $SiO{_3}^{2-}$ ions were observed to contribute to the formation of PEO films but $OH^-$ ions were found to break down the surface films under high electric field. The effect of pulse current on the formation of PEO films will be also reported.

  • PDF

Zn 첨가량에 따른 Al-Si-Mg-Cu계 합금의 미세조직 및 기계적 특성변화 (Effect of Zn additions on the Mechanical Properties of High Strength Al-Si-Mg-Cu alloys)

  • 황수빈;김병주;정성수;김동규;이영철
    • 한국주조공학회지
    • /
    • 제39권3호
    • /
    • pp.33-43
    • /
    • 2019
  • In this study, the effects of Zn additions on the mechanical properties of Al-Si-Mg-Cu alloys were investigated by increasing the amount of Zn up to 8wt.%. As the Zn content was increased up to 6 wt.%, the yield strength and elongation changed linearly without any significant changes in the size and shape of the main reinforcement phase. However, it was confirmed by SEM observation that the Mg-Zn phase formed between the reinforcement phases when the amount of Zn added exceeded 7wt.%. A Mg-Zn intermetallic compound formed between the $Mg_2Si$ phase, becoming a crack initiation point under stress. Thus, the formation of the Mg-Zn phase may cause a sharp decrease in the elongation when Zn at levels exceeding 7 wt.%. It was also found that the matrix became more brittle with increasing the Zn content. From these results, it can be concluded that the formation of the Mg-Zn intermetallic compound and the brittle characteristics of the matrix are the main causes of the remarkable changes in the mechanical properties of this alloy system

자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동 (High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys)

  • 박종수;성시영;한범석;정창렬;이기안
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.