• Title/Summary/Keyword: Al-Si casting alloys

Search Result 106, Processing Time 0.025 seconds

ALLOY STRUCTURE AND ANODIC FILM GROWTH ON RAPIDLY SOLIDIFIED AL-SI-BASED ALLOYS

  • Kim, H.S.;Thompson, G.E.;Wood, G.C.;Wright, I.G.;Maringer, R.E.
    • Journal of the Korean institute of surface engineering
    • /
    • v.17 no.2
    • /
    • pp.29-40
    • /
    • 1984
  • The structure of rapidly solidified Al-Si-based alloys and its relationship to subsequent anodic film growth in near neutral and acid solutions have been investigated. Solidification of the alloys proceeds via pre-dendritic nuclei, associated with rugosity of the casting surface, from which cellular-type growth, comprised of aluminium-rich material surrounded by silicon-containing material, emanates. Observation of ultramicrotomed sections of the alloys and their anodic films reveals the local oxidation of the silicon-rich phase and its incorporation into the anodic alumina film, formed in near neutral solutions. Such incorporation occurs but resultant isolation of the silicon-rich phase is not possible for anodizing in phosphoric acid, and a three-dimensional network of the oxidized silicon-containing phase, with continuing development of porous anodic alumina, is observed.

  • PDF

The Effect of Copper on Feeding Characteristics in Al-Si Alloys

  • Young-Chan Kim;Jae-Ik Cho
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.294-301
    • /
    • 2023
  • The effects of Cu on feeding and macro-porosity characteristics were investigated in hypo- (A356 and 319) and hypereutectic (391) aluminum-silicon alloys. T-section and Tatur tests showed that the feeding and macro-porosity characteristics were significantly different between the hypo- and hypereutectic alloys. The hole and the pipe in the T-section and the Tatur casting in hypereutectic alloy showed a rough and irregular shape due to the faceted growth of the primary silicon, while the results of the hypoeutectic alloys exhibited a rather smooth surface. However, the addition of Cu did not strongly affect the macro-feeding behavior. It is known that copper segregates and interferes the feeding process in the last stage of solidification, possibly leading to form more amount of micro shrinkage porosity by the addition of Cu. The macro porosity formation mechanism and feeding properties were discussed upon T-section and Tatur tests together with an alloying addition.

Plastic Deformation Behavior of Al-Si Alloy (Al-Si 합금의 소성변형 거동)

  • Kwon Y. N.;Kim S. W.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.130-133
    • /
    • 2005
  • The effect of microstructural characteristics of A356 alloys on tensile behavior was studied ill the present study. To authors' knowledge, the microstructural effect on mechanical properties of A356 alloy has not been well understood even though this alloy system is one of the most widely used alloys for the industrial purpose. Specially, quantitative relationship between properties like ductility and fracture toughness with microstructural features is lacking. In the present study, three processing routes was used to fabricate samples with different microstructures like size and distribution of primary alpha and eutectic phases. Also, compressive deformation was used to close casting porosity for the cast samples. Tensile behavior was examine and discussed in terms of microstructural aspects.

  • PDF

Simultaneous Refinement of Primary and Eutectic Si in Hypereutectic Al-Si Alloys (과공정 Al-Si합금에서의 초정 및 공정 Si의 동시 미세화)

  • Park, Jae-Young;Lee, Jae-Sang;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.262-271
    • /
    • 1995
  • It is well known what is impossible to refine primary and eutectic Si simultaneously by addition of both Cu-P and Sr(or Na). Because of the formation of compound $Sr_3P_2(or Na_3P)$ in the melt, in the result, both effects disappear. In this study Al-Cu-P alloy that comprises AlP compounds inside is added in the melt with Sr simultaneously. As AlP compounds that act on nucleation sites of primary Si are not formed but added directly an the melt, it is difficult to form $Sr_3P_2$ by reaction with Sr. Therefore it is possible to refine primary and eutectic Si simultaneously in the general casting process by use of Al-Cu-P alloy and Sr.

  • PDF

Mechanical Properties of Hyper-Eutectic Aluminum Alloys for Automobile Parts (자동차 부품용 과공정 알루미늄 합금의 기계적 특성)

  • Bae, Chul-Hong;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.120-126
    • /
    • 2010
  • It was known that the excellent wear resistance of hyper eutectic aluminum alloy is based on the primary Si particles which are distributed in the base metal. When the primary Si volume fraction increases, the smaller size have excellent wear resistance characteristics. However, this trend always does not match. There is no investigation result based on the materials and methods for real using parts. In this study, using the automotive parts manufacturer currently in use hyper eutectic Al alloy tensile test specimen type sample was fabricated by 350Ton high pressure die-casting machine. Then, fluidity, tensile, impact and wear resistance properties were evaluated. If the casting quality, primary Si size, fraction and distribution are similar, mechanical properties and wear resistance are equivalent.

Effects of Fe and Cu Addition on the Microstructure and Tensile Properties of Al-Si-Mg Alloy for Compound Casting (복합주조용 Al-Si-Mg합금의 미세조직 및 인장성질에 미치는 Fe 및 Cu 첨가의 영향)

  • Kim, Jeong-Min;Jung, Ki-Chae;Kim, Chae-Young;Shin, Je-sik
    • Journal of Korea Foundry Society
    • /
    • v.41 no.1
    • /
    • pp.3-10
    • /
    • 2021
  • In the compound casting between the aluminum alloy and the cast iron, the iron component may be dissolved from the cast iron during the process and mixed into the aluminum melt, thereby forming various iron-containing intermetallic compounds and significantly deteriorating the tensile properties of the aluminum alloy. On the other hand, unlike Fe, which is added as an impurity, Cu is added to improve the mechanical properties of the aluminum alloy. In this study, the change in microstructure and tensile properties of aluminum alloys due to the addition of Fe and Cu was investigated. A large amount of iron-containing compounds such as coarse Al5FeSi phases were formed when the iron content was 1% or more, and the tensile properties were significantly reduced. In the case of the aluminum alloy to which Cu was added, an Al2Cu phase was additionally formed and the tensile strength was clearly improved.

Wear Resistance of Al Alloy Matrix Composites Using Porous Iron Aluminide-$SiC_p$ Preforms (Iron Aluminide-$SiC_p$ 혼합 예비성형체를 사용한 Al합금기 복합재료의 내마모 특성)

  • Cha, Jae-Sang;Oh, Sun-Hoon;Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.1
    • /
    • pp.30-39
    • /
    • 2003
  • Porous hybrid preforms were fabricated by reactive sintering using the compacts consisting of SiC particles, Fe and Al powders. Squeeze casting processing was employed to produce the composite in which the matrix phase is Al-Si7Mg. The microstructural change and wear resistance of the composites were investigated in terms of an amount of SiC particles. The wear loss was increased with increasing the contact pressure in the alloy containing SiC particles coated with Cu. The most drastic change was found to the specimen tested at 2.5 MPa of contact pressure. Concerning the alloys containing SiC particles coated with Ni-P, a drastic increase in the wear loss exhibited at 2 MPa of contact pressure in those alloys containing 4 and 8 wt. % of SiC particles coated with Ni-P. In the alloy containing 16 wt. % a proportional increase in wear loss was observed to the change of contact pressure. With respecting to the sliding velocity, the wear loss of the alloy containing SiC particles coated with Cu increased at the initial stage of wear process and then decreased. Similar result was found in the alloys containing SiC particles coated with Ni-P. On the basis of the present results obtained, it was found that wear resistance of the alloys tested was improved to show in the order of the alloy reinforced by coated SiC particles > by uncoated SiC particles > by intermetallic compound without SiC particles.

Effect of Si Particle Size on the Thermal Properties of Hyper-eutectic Al-Si Alloys (과공정 Al-Si 합금의 열팽창 특성에 미치는 Si 입자 크기의 영향)

  • Kim, Chul-Hyun;Joo, Dae-Heon;Kim, Myung-Ho;Yoon, Eui- Pak;Yoon, Woo-Young;Kim, Kwon-Hee
    • Journal of Korea Foundry Society
    • /
    • v.23 no.4
    • /
    • pp.195-203
    • /
    • 2003
  • Hyper-eutectic Al-Si alloy is used much to automatic parts and material for the electronic parts because of the low coefficient of thermal expansion, superior thermal stability and superior wear resistance. In this work, A390 alloy specimens were fabricated for control of the Si particle size by various processes, such as spray-casting, permanent mold-casting and squeeze-casting. To minimize the effect of microporosity of the specimens, hot extrusion was carried out under equal condition. Each specimens were evaluated tensile properties at room temperature and thermal expansion properties in the range from room temperature to 400$^{\circ}C$. Ultimate tensile strength and elongation of the spray-cast and extruded specimens which have fine and well distributed Si particles were improved greatly compare to the permanent mold-cast and extruded ones. Specimens which have finer Si particles showed higher ultimate tensile strength and elongation than those having large Si particle size, and coefficient of thermal expansion of the specimens increased linearly with Si particle size. In case of the repeated high temperature exposures, thermal expansion properties of the spray-cast and extruded specimens were found to be more stable than those of the others due to the effect of fine and well distributed Si particles.

Effect of T6 heat treatment on the microstructure and mechanical properties of AA365 alloy fabricated by vacuum-assisted high pressure die casting (고진공 고압 다이캐스팅으로 제조된 AA365 합금의 미세조직과 기계적 특성에 미치는 T6 열처리의 영향)

  • Junhyub Jeon;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.3
    • /
    • pp.121-127
    • /
    • 2024
  • We investigate the effect of T6 heat treatment on the microstructure and mechanical properties of AA365 (Al-10.3Si-0.37Mg-0.6Mn-0.11Fe, wt.%) alloy fabricated by vacuum-assisted high pressure die casting by means of thermodynamic calculation, X-ray diffraction, scanning and transmission electron microscopy, and tensile tests. The as-cast alloy consists of primary Al (with dendrite arm spacing of 10~15 ㎛), needle-like eutectic Si, and blocky α-AlFeMnSi phases. The solution treatment at 490 ℃ induces the spheroidization of eutectic Si and increase in the fraction of eutectic Si and α-AlFeMnSi phases. While as-cast alloy does not contain nano-sized precipitates, the T6-treated alloy contains fine β' and β' precipitates less than 20 nm that formed during aging at 190℃. T6 heat treatment improves the yield strength from 165 to 186 MPa due to the strengthening effect of β' and β' precipitates. However, the β' and β' precipitates reduce the strain hardening rate and accelerate the necking phenomenon, degrading the tensile strength (from 290 to 244 MPa) and fracture elongation (from 6.6 to 5.0%). Fractography reveals that the coarse α-AlFeMnSi and eutectic Si phases act as crack sites in both the as-cast and T6 treated alloys.

The Wear Properties of the Precipitation Hardened Al-Pb-Cu Bearing Alloys (석출경화된 Al-Pb-Cu계 베어링 합금의 마모거동)

  • 홍택기;허무영;임대순;안성욱
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.56-62
    • /
    • 1993
  • Al-Pb-Cu and Al-Si-Pb-Cu bearing alloys were produced by forced-stirring method and water-cooled copper mold casting to investigate the effect of the precipitation hardening on the wear properties. Sliding of produced alloy pin against a steel disc were performed under various applied loads. Lowering the wear rate and material transfer phenomena were explained by the strengthening of $\theta'$ precipitates on AI matrix. The transmission electron microscope observation reveals the role of the precipitates in the alloys with Cu. The movement of dislocations was hindered by precipitates which resulted in the reduction of plastic deformation at the worn surfaces.