• Title/Summary/Keyword: Al-Si

Search Result 4,522, Processing Time 0.03 seconds

$\alpha$-halo formation in semi-solid state processed hypereutectic Al-Si alloy (반고상 가공과 공정 Al-Si 합금에서 $\alpha$-halo의 형성)

  • 김인준;김도향
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.183-195
    • /
    • 1997
  • The micorstructural characteristics, particularly $\alpha$-halo formation, in semi-solid state processed hypereutectic Al-Si alloy was investigated. The microstructural changes during reheating of wedge type mold cast ingot, hot-rolled sheet, and Si particulate reinforced Al composite was compared with those occurred during stirring of semi-solid state hypereutectic alloy. In the case of semi-solid state reheating of wedge type ingot and hot-rolled sheet, fine particles of Si as well as $\alpha$-halo formed after heat treatment. Although there seemed to be no coarsening with variations of holding time, the region of $\alpha$-halo decreased due to homogenization. Nucleation and recrystallization was accelerated with the addition of alloying elements during hot rolling resulting in primary Si particle size decrease and $\alpha$-halo formation. In the case of extruded specimens, very little morphological change of reinforcing Si particles was observed. Almost no $\alpha$-halo formed during reheating because of the oxide film formed on the reinforcing Si particles which acted as a diffusion barrier between the matrix and the primary Si particles.

  • PDF

Change of Secondary Dendrite Arm Spacing of Hypoeutectic Al-Si Alloys according to Si Content and Cooling Rate (아공정 Al-Si 합금에서 Si 함량과 냉각속도에 따른 제이차수지상간격의 변화)

  • Park, Kyeong-Seob;Kim, Hee-Soo
    • Journal of Korea Foundry Society
    • /
    • v.37 no.4
    • /
    • pp.108-114
    • /
    • 2017
  • In this study, we investigated the effect of the Si content on the secondary dendrite arm spacing (SDAS) of hypoeutectic Al-Si binary alloys in the range of 4~10 wt% Si. Cooling curves were measured during the solidification of the alloy cast in a step-wise mold. We compared two kinds of solidification time: the first is the total solidification time for both dendritic and eutectic growth, and the second is the solidification time for only dendritic growth. The proportional constant in the relationship between SDAS and cooling rate was estimated, as this constant represents the stability of the cast microstructure. The proportional constant decreased with the Si contents from 4 wt% to 8 wt%, and it remains relatively uniform with up to 10 wt% of Si.

Thermal Characteristics of SiC Whisker Reinforced $Al_2$O$_3$-SiC Composite (SiC 휘스커 보강 $Al_2$O$_3$-SiC 복합체의 열간특성)

  • 김윤주;나용한
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.1-4
    • /
    • 1998
  • SiC whisker reinforced Al2O3-SiC composite was fabricated by reaction synthesis method whish is cost ef-fective and allows good dispersion of whiskers. Fracture strength at room temperature showed the highest value with 150$0^{\circ}C$ reaction temperature because a lot of SiC whiskers was formed. Fracture strength at 135$0^{\circ}C$ did not show big differences with reaction temperature due to agglomeration of whiskers and formation of sil-icon oxynitride during hot MO(modulus of rupture) test probably promoting grain boundary sliding.

  • PDF

Adsorption of water vapor on zeolites of different framework types and alkali ions (다양한 구조와 양이온을 갖는 제올라이트 분체의 수증기 흡착 거동 연구)

  • Song, Ju-Sub;Sharma, Pankaj;Kim, Beom-Ju;Kim, Min-Zi;Han, Moon-Hee;Cho, Churl-Hee
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.160-168
    • /
    • 2014
  • In the present study, water vapor adsorption was evaluated at 298.15K for 9 different zeolites having LTA, FAU, CHA, and RHO frameworks, and then effect of framework type, Si/Al molar ratio, and alkali ion type on water up-take was investigated. Zeolites showed water up-takes which were increased in an order of $RHO<CHA{\approx}LTA<FAU$ frameworks. NaY zeolite having FAU framework showed a water up-take of 406 mg/g at p/po=0.5. The up-take was a little larger than that of 13X zeolite with the same framework. Among LTA zeolites, Ca-type 5A zeolite showed the highest water adsorption (282 mg/g at p/po=0.5) which could be explained by the large pore volume. Both CHA zeolite with a Si/Al molar ratio of 2.35 and RHO zeolite with a Si/Al molar ratio of 3.56 showed considerable water up-takes, even though the Si/Al molar ratio was much larger than that of LTA zeolite. In the present study, it is announced that in addition to FAU and LTA zeolites, CHA and RHO zeolites can be a promising dehumidification adsorbent.

Analysis of Temperature dependent Thermal Expansion Behavior of $\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ Composites ($\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ 복합재료의 온도에 따른 열팽창 특성 해석)

  • 정성욱;남현욱;정창규;한경섭
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • This study developed SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites for electronic packaging to which reinforcements were added with the volume fractions of 49%, 56% and 63% by the squeeze casting method. 0.8 wt. % of the inorganic binder as well as the A1$_2$O$_3$ fiber and SiC Particles with the volume fraction of 1:10 were added to the composites, which were produced in the newly designed mold. For the produced SiC/Al composites, the CTEs (coefficients of thermal expansion) were measured from 30 to 300 and compared with the FEM numerical simulation to analyze the temperature dependent properties. The experiment showed the CTEs of SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites that were intermediate values of those of Rule of Mixture and Turner's Model. The CTEs were close to Turner's Model in the room temperature and approached the Rule of Mixture as the temperature increases. These properties analyzed from the difference of the average stress acting between the matrix and the reinforcements proposed in this study.

Microstructure and Mechanical Properties of Hypereutectic Al-Si Alloy Bars Processed via Horizontal Continuous Casting (수평연속주조한 과공정 Al-Si합금 소경봉의 미세조직 및 기계적성질)

  • Kim, Wan-Chul;Park, Ji-Ha;You, Bong-Sun;Park, Won-Wook
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.585-591
    • /
    • 1997
  • Hyper-eutectic Al-17.5wt%Si alloy bars of 25 mm in diameter were produced by horizontal continuous casting process. Effect of both casting speed and primary Si refiner (AlCuP) on microstructure and mechanical properties of the alloy have been investigated. With increasing a weight fraction of AlCuP, the average primary Si size decreased down to $20 {\mu}m$. On the contrary, there was no notable changes of microstructure and primary Si size according to the casting speed in the experimental range of this study, indicating that the cooling rate should be increased to optimize and refine microstructure and primary Si size. The experimental results including hardness, tensile strength and wear resistance tests of the processed alloy bars showed a good possibility to develop the high performance wear resistant Al-Si alloy.

  • PDF

High-Temperature Strength of the Hot-Pressed Partially Stabilized $\alpha$-Sialon Ceramics Having the Composition of Y0.1(Si, Al)12(N, O)16 ($Y_{0.1}$(Si, Al)$_12$(N, O)$_16$의 조성을 갖는 부분안정화 $\alpha$-Sialon 열간가압소결체의 고온강도)

  • 조덕호;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.410-418
    • /
    • 1992
  • Si3N4, AlN and Y2O3 powder mixtures of the Y0.1(Si, Al)12(N, O)16 composition were hot-pressed at 1900℃ for 0 to 60 min under 30 MPa in order to fabricate the partially-stabilized α-Sialon ceramics (X=0.1). Room and high temperature flexural strengths of the specimens were compared with those of Si3N4-5 wt%Y2O3, Si3N4-5 wt%Y2O3-2 wt%Al2O3, and β-Sialon (Z=0.5) ceramics. The flexural strength of the α-Sialon ceramics which was hot-pressed for 15 min showed the highest value of 820 MPa at 1400℃ that is relatively higher temperature. It is guessed that a little amount of glassy phase existed in grain boundary because Y2O3 and AlN components were incoperated in Si3N4 grains, or transient liquid phase sintering, and microstructure with the smaller grain size and the interlocked grains of α'-and β-Si3N4 was obtained by the hot-pressing at high temperature of 1900℃ for the short time (15 min).

  • PDF

The Effect of Extrusion Temperatures on Microstructures and Mechanical Properties of Ultra-Fine Structured and Extruded Al81Si19 Alloys (초 미세조직 Al81Si19 합금분말 압출재의 미세조직과 기계적 성질에 미치는 압출온도의 영향)

  • 이태행;홍순직
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.325-332
    • /
    • 2003
  • The effect of extrusion temperature on the microstructure and mechanical properties was studied in gas atomized TEX>$Al_{81}Si_{19}$ alloy powders and their extruded bars using SEM, tensile testing and wear testing. The Si particle size of He-gas atomized powder was about 200-800 nm. Each microstructure of the extruded bars with extrusion temperature (400, 450 and 50$0^{\circ}C$) showed a homogeneous distribution of primary Si and eutectic Si particles embedded in the Al matrix and the particle size varied from 0.1 to 5.5 ${\mu}m$. With increasing extrusion temperature from 40$0^{\circ}C$ to 50$0^{\circ}C$, the ultimate tensile strength (UTS) decreased from 282 to 236 ㎫ at 300 K and the specific wear increased at all sliding speeds due to the coarse microstructure. The fracture behavior of failure in tension testing and wear testing was also studied. The UTS of extrudate at 40$0^{\circ}C$ higher than that of 50$0^{\circ}C$ because more fine Si particles in Al matrix of extrudate at 40$0^{\circ}C$ prevented crack to propagate.

Effect of $Al_2O_3$ on Hot-Press of ${\alpha}-SiC$ and Mechanical Properties (알루미나의 첨가가 ${\alpha}-SiC$의 가압소결 및 기계적 성질에 미치는 영향)

  • 이수영;고재웅;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.561-567
    • /
    • 1991
  • Submicron ${\alpha}-SiC$ powder with $Al_2O_3$ addition was hot-pressed under the controlled heating and pressurizing schedule. $SiO_2$ layer on ${\alpha}-SiC$ powder was effective for the sintering of ${\alpha}-SiC$ powder when $Al_2O_3$ was used as an additive. Applying of pressure under the controlled schedule accelerated the rearrangment of SiC grains, yielding 98% of theoretical density of SiC even at $1900^{\circ}C$. Flexural strength of the specimen containing 2 wt% $Al_2O_3$ was increased as increasing the hot-pressing temperature up to $2050^{\circ}C$ and maximum value was 800 MPa, while the flexural strength of the specimen containing 10 wt% $Al_2O_3$ was decreased as increasing the hot-pressing temperature above $2000^{\circ}C$ due to the formation of continuous grain boundary phase. Fracture toughness of the specimens was in the range of $3.5~4.5\;MNm^{-3/2}$ regardless of the amount of $Al_2O_3$ addition.

  • PDF

Properties and Casting Characteristics of Al-Zn-Fe-Si Alloys (Al-Zn-Fe-Si 합금의 물성 및 주조특성)

  • Yun, Ho-Seob;Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.8-12
    • /
    • 2013
  • Although aluminum-silicon based commercial casting alloys have been used in applications that demand high electrical or thermal conductivity, new aluminum casting alloys that possess higher conductivities are currently required for advanced applications. Therefore, there is much research into the development of new high conductivity aluminum casting alloys that contain lower amounts of or no silicon. In this research, the properties and casting characteristics of Al-Zn-Fe-Si alloys with various Fe and Si contents were investigated. Two types of AlFeSi phases were formed depending on the Fe and Si contents. As the silicon content increased, the tensile strength of the Al-Zn-Fe-Si alloy increased slightly, while the electrical conductivity decreased slightly. It was also observed that both the fluidity and hot cracking susceptibility of the investigated alloys were closely related to the formation of the AlFeSi phases.