DOI QR코드

DOI QR Code

Adsorption of water vapor on zeolites of different framework types and alkali ions

다양한 구조와 양이온을 갖는 제올라이트 분체의 수증기 흡착 거동 연구

  • Song, Ju-Sub (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Sharma, Pankaj (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Beom-Ju (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Kim, Min-Zi (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Han, Moon-Hee (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
  • 송주섭 (충남대학교 에너지과학기술대학원) ;
  • ;
  • 김범주 (충남대학교 에너지과학기술대학원) ;
  • 김민지 (충남대학교 에너지과학기술대학원) ;
  • 한문희 (충남대학교 에너지과학기술대학원) ;
  • 조철희 (충남대학교 에너지과학기술대학원)
  • Received : 2014.10.21
  • Accepted : 2014.12.05
  • Published : 2014.12.31

Abstract

In the present study, water vapor adsorption was evaluated at 298.15K for 9 different zeolites having LTA, FAU, CHA, and RHO frameworks, and then effect of framework type, Si/Al molar ratio, and alkali ion type on water up-take was investigated. Zeolites showed water up-takes which were increased in an order of $RHO<CHA{\approx}LTA<FAU$ frameworks. NaY zeolite having FAU framework showed a water up-take of 406 mg/g at p/po=0.5. The up-take was a little larger than that of 13X zeolite with the same framework. Among LTA zeolites, Ca-type 5A zeolite showed the highest water adsorption (282 mg/g at p/po=0.5) which could be explained by the large pore volume. Both CHA zeolite with a Si/Al molar ratio of 2.35 and RHO zeolite with a Si/Al molar ratio of 3.56 showed considerable water up-takes, even though the Si/Al molar ratio was much larger than that of LTA zeolite. In the present study, it is announced that in addition to FAU and LTA zeolites, CHA and RHO zeolites can be a promising dehumidification adsorbent.

본 연구에서는 LTA, FAU, CHA, RHO 제올라이트 분체 9종의 298.15 K에서의 수증기 흡착 특성을 고찰하여 구조, Si/Al 몰 비, 양이온 종류가 제올라이트 분체의 수증기 흡착에 미치는 영향을 고찰하였다. 수증기 흡착량은 $RHO<CHA{\approx}LTA<FAU$ 제올라이트 분체 순으로 증가하였다. FAU 제올라이트 분체의 경우, Si/Al 몰 비가 작은 NaY 제올라이트 분체가 13X 제올라이트 분체에 비하여 우수한 수증기 흡착량(406 mg/g)을 보였다. LTA 제올라이트 분체의 경우, Ca로 치환 5A 제올라이트 분체가 3A, 4A 제올라이트 분체에 비하여 우수한 수증기 흡착량(282 mg/g)을 보였다. CHA 제올라이트 분체는 Si/Al 몰 비가 2.35으로 LTA 제올라이트 분체의 Si/Al 몰 비보다 컸지만 LTA 제올라이트 분체와 유사한 수증기 흡착량을 보였다. 또한, RHO 제올라이트 분체는 Si/Al 몰 비가 3.56으로 컸지만 (188 mg/g)으로 상당량의 수증기 흡착량을 보였다. 본 연구결과로부터 FAU, LTA 제올라이트 분체뿐만 아니라 Si/Al 몰 비가 커서 화학적 내구성이 우수할 것으로 예상되는 CHA, RHO 제올라이트 분체도 우수한 제습 흡착제임을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원

References

  1. Ng, E.-P.; Mintova, S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous and Mesoporous Materials 2008, 114 (1), 1-26
  2. Gandhidasan, P.; Al-Farayedhi, A. A.; Al-Mubarak, A. A. Dehydration of natural gas using solid desiccants. Energy 2001, 26 (9), 855-868 https://doi.org/10.1016/S0360-5442(01)00034-2
  3. Srivastava, N.; Eames, I. A review of adsorbents and adsorbates in solid-vapour adsorption heat pump systems. Applied Thermal Engineering 1998, 18 (9), 707-714 https://doi.org/10.1016/S1359-4311(97)00106-3
  4. Cappell, R.; Hammerschmidt, E.; Deschner, W. Dehydration of commercial gases by solid adsorbents. Industrial & Engineering Chemistry 1944, 36 (9), 779-784 https://doi.org/10.1021/ie50417a002
  5. Davis, M. E.; Lobo, R. F. Zeolite and molecular sieve synthesis. Chemistry of Materials 1992, 4 (4), 756-768 https://doi.org/10.1021/cm00022a005
  6. Yamamoto, T.; Kim, Y. H.; Kim, B. C.; Endo, A.; Thongprachan, N.; Ohmori, T. Adsorption characteristics of zeolites for dehydration of ethanol: Evaluation of diffusivity of water in porous structure. Chemical Engineering Journal 2012, 181, 443-448
  7. Moise, J.; Bellat, J.; Methivier, A. Adsorption of water vapor on X and Y zeolites exchanged with barium. Microporous and mesoporous materials 2001, 43 (1), 91-101 https://doi.org/10.1016/S1387-1811(00)00352-8
  8. Jung, K.-H.; Kim, J.-H.; Seo, G. Improvement of Hydrothermal and Mechanical Stabilities of MCM-41 and KIT-1 Mesoporous Material by Silane Modification. JOURNAL-KOREAN INSTITUTE OF CHEMICAL ENGINEERS 1997, 35, 895-899
  9. Zhao, D.; Sun, J.; Li, Q.; Stucky, G. D. Morphological control of highly ordered mesoporous silica SBA-15. Chemistry of Materials 2000, 12 (2), 275-279 https://doi.org/10.1021/cm9911363
  10. 서곤. 제올라이트 첫걸음. 전남대학교 출판부 2005
  11. Chapman, P. D.; Oliveira, T.; Livingston, A. G.; Li, K. Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science 2008, 318 (1), 5-37 https://doi.org/10.1016/j.memsci.2008.02.061
  12. Meier, W. M.; Olson, D. H. Atlas of zeolite structure types. Butterworths London etc: 1987; Vol. 26
  13. Breck, D. W. Zeolite molecular sieves. Krieger: 1984
  14. Sherry, H. S. The ion-exchange properties of zeolites. I. Univalent ion exchange in synthetic faujasite. The Journal of Physical Chemistry 1966, 70 (4), 1158-1168 https://doi.org/10.1021/j100876a031
  15. Baerlocher, C.; McCusker, L. B.; Olson, D. H. Atlas of zeolite framework types. Elsevier: 2007
  16. Guo, S.; Yu, C.; Gu, X.; Jin, W.; Zhong, J.; Chen, C.-l. Simulation of adsorption, diffusion, and permeability of water and ethanol in NaA zeolite membranes. Journal of Membrane Science 2011, 376 (1), 40-49 https://doi.org/10.1016/j.memsci.2011.03.043
  17. Hasegawa, Y.; Hotta, H.; Sato, K.; Nagase, T.; Mizukami, F. Preparation of novel chabazite (CHA)-type zeolite layer on porous ${\alpha}$-Al2O3 tube using template-free solution. Journal of Membrane Science 2010, 347 (1), 193-196 https://doi.org/10.1016/j.memsci.2009.10.024
  18. Lalik, E.; Mirek, R.; Rakoczy, J.; Groszek, A. Microcalorimetric study of sorption of water and ethanol in zeolites 3A and 5A. Catalysis today 2006, 114 (2), 242-247 https://doi.org/10.1016/j.cattod.2006.01.006
  19. Ryu, Y. K.; Lee, S. J.; Kim, J. W.; Leef, C.-H. Adsorption equilibrium and kinetics of H2O on zeolite 13X. Korean Journal of Chemical Engineering 2001, 18 (4), 525-530 https://doi.org/10.1007/BF02698301
  20. Gorbach, A.; Stegmaier, M.; Eigenberger, G. Measurement and modeling of water vapor adsorption on zeolite 4A-Equilibria and kinetics. Adsorption 2004, 10 (1), 29-46 https://doi.org/10.1023/B:ADSO.0000024033.60103.ff
  21. Sircar, S.; Hufton, J. Why does the linear driving force model for adsorption kinetics work? Adsorption 2000, 6 (2), 137-147 https://doi.org/10.1023/A:1008965317983
  22. Alpay, E.; Scott, D. The linear driving force model for fast-cycle adsorption and desorption in a spherical particle. Chemical engineering science 1992, 47 (2), 499-502 https://doi.org/10.1016/0009-2509(92)80041-A
  23. Carta, G. The linear driving force approximation for cyclic mass transfer in spherical particles. Chemical engineering science 1993, 48 (3), 622-625 https://doi.org/10.1016/0009-2509(93)80316-I