• Title/Summary/Keyword: Al-STS steel

Search Result 63, Processing Time 0.022 seconds

Interpretation of Strain States during Clad-Rolling of STS/Al 5 Ply Composites by Means of Texture Analysis (집합조직 분석에 의한 5겹 STS/Al 복합재 클래드 압연 시 변형상태 해석)

  • Kang H. G.;Park J. S.;Park S. H.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.303-306
    • /
    • 2005
  • Two composites of five plies of STS/Al/Al/Al/STS and STS/Al/STS/Al/STS were produced by roll-cladding at $350^{\circ}C$ from ferritic stainless steel (STS) and aluminum (Al) sheets. In order to analyze the strain states during roll-cladding, the evolution of textures at different through-thickness positions in the roll-clad composites was investigated. Simulations with the finite element method (FEM) disclosed that a strain state which was similar to that of normal rolling with a high friction between roll surface and Al sample led to the formation of texture gradients in the Al sheets in the STS/Al/Al/Al/STS composite. Differences in the material velocity of STS and Al in the rolling direction gave rise to the formation of the shear texture in the Al sheets in the STS/Al/STS/Al/STS composite.

  • PDF

Study on Strain States during Roll-Cladding of Stainless Steel and Aluminum (스테인리스강과 알루미늄 롤-클래드 시 변형상태 연구)

  • Kim J. K.;Huh M. Y.;Jee K. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.221-224
    • /
    • 2004
  • The clad samples of five plies of sheets comprising ferritic stainless steel (STS) and aluminum (Al) were prepared by roll-cladding at $350^{\circ}C$. The evolution of strain states and textures during roll-cladding of STS430/AA3003/AA3003/AA3 003/STS430 and STS430/AA3003/STS430/AA3003/STS430 was investigated by measurements of crystallographic textures and by simulations with the finite element method (FEM). Because the deformation mainly occurs in the Al layer during roll-cladding, the present investigation was focused on the Al layers located. The stacking sequence of sheet materials in the clad samples played an important role in the evolution of strain states during roll-cladding.

  • PDF

Interfacial Reaction on Heat Treatment of Roll-bonded STS304/Al1050/STS439 Clad Materials and its Effect on the Mechanical Properties (압연 제조된 STS439/Al1050/ STS304 Clad소재의 열처리에 따른 계면 반응과 기계적 특성에서의 계면 반응 효과)

  • Song, Jun-Young;Kim, In-Kyu;Lee, Young-Seon;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.910-915
    • /
    • 2011
  • The microstructures and mechanical properties of roll-bonded STS439/Al1050/STS304 clad materials were investigated after an annealing process at various temperatures. Interfacial layer was developed at the STS439/Al1050 and Al1050/STS304 interfaces at $550^{\circ}C$. STS439/Al1050/STS304 clad metals fractured suddenly in a single step and the fracture decreased with increasing annealing temperatures at $450^{\circ}C$. After annealing at $550^{\circ}C$, samples fractured in three steps with each layer fracturing independently. Interfacial layers formed at $550^{\circ}C$ with a high Vickers microhardness were found to be brittle. During tensile testing, periodic parallel cracks were observed at the interfacial reaction layer. Observed micro-void between Al1050 and the interfacial layer was found to weaken the Al1050/reaction layer interface, leading to the total separation between Al1050 and the reaction layer.

Study of the Al-coating on the STS 316L Stainless Steel by Pulse Plating in the Molten Salts at Room Temperature (펄스 도금법을 이용한 STS 316L 스테인리스강 상의 저온 염욕 알루미늄 코팅에 관한 연구)

  • 정세진;조계현
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.1
    • /
    • pp.17-32
    • /
    • 2002
  • Electroplating methods by molten salts and non-aqueous melts were employed for aluminium coating on STS 316L stainless steel. After coated with Ni or non-coated surface on stainless steel, Al pulse plating was carried out in two different types of electrolytes at room temperature. The Al layer from $AlCl_3$-TMPAC melts could not obtain appreciable thickness for engineering application due to chemical reactions between deposits and moisture of air. However, The Al coating by pulse plating in the Ethylbenzene-Toluene-$AlBr_3$ systems was found to be solid coating layer with a few $\mu\textrm{m}$ scale. The conductivity of Ethylbenzene-Toluene-$AlBr_3$ electrolyte was as functions of time and agitation. By seven days exposure after mixing of the electrolyte, Al-deposited layer shows uniform and near by pore-free with high current density (higher than 30mA/$\textrm{cm}^2$). The roughness and imperfection of coating layer were decreased with a increasing agitation speed. It was found that the optimum condition for the Al pulse plating on the 316L stainless steel was a 400mA peak current, duty cycle, $t_{on}$ $t_{ off}$=3ms/1ms, and a current density of 30mA/$\textrm{cm}^2$.

The Effect of friction between Roll and STS the Roll Cladding Behavior of STS/Al/STS Sandwich Sheet (압연에 의한 STS/AI/STS 클래드판재 제조시 롤과 STS 사이의 마찰의 영향)

  • 정영훈;지광구;서진유;신명철
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.482-486
    • /
    • 2002
  • Sandwich sheets composed of stainless steel/aluminum/stainless steel were produced by roll cladding. In order to investigate the effect of the friction between roll and cladding sample, the lubrication condition of the roll surface was varied. Clad rolling without lubrication gave rise to a small increment of the normal strain of aluminum in the rolling direction. This experimental result was confirmed by FEM modeling. Through-thickness hardness gradients in the mid aluminum layer was successfully explained by variations of the strain state through thickness layers. FEM modeling implied that cladding without lubrication led to a large shear strain variation at the surface of aluminum layer.

Development of Sn-Al Thermal Diffusion Coating Technology for Improving Anti-Galling Characteristics of 304 Stainless Steel (304 스테인레스강의 고착방지성능 향상을 위한 Sn-Al 열 확산 코팅 기술 개발)

  • Hwang, Ju-Na;Kang, Sung-Hun;Cho, Sungpil;Jeong, Hui-Jong;Kim, Dong-Uk;Lee, Bang-Hui;Hwang, Jun;Lee, Yong-Kyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.297-302
    • /
    • 2018
  • The important drawback of hardware fasteners consisted of 304 stainless steel (STS) is a frequent galling caused by a combination of friction and adhesion between the sliding surface. To improve the anti-galling effect, Sn-Al coatings by a thermal diffusion have been developed. The thermal diffusion by pack cementation with an $AlCl_3$ activator at $250^{\circ}C$ for 1 hour produced an Sn-Al alloy coating layer with an average thickness of $9.9{\pm}0.5{\mu}m$ on the surface of 304 STS fasteners. Compared with the galling frequency of the 304 STS fasteners, Sn-Al coatings on the surface of 304 STS fasteners demonstrated about 2.8-time reduction of the galling frequency.

Fabrication and Evaluation of the Al-STS-Cu Functionally Graded Materials (알루미늄-스테인레스스틸-구리 경사기능재료의 제조 및 특성평가)

  • Kwangjae Park;Dasom Kim;Hansang Kwon
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.241-245
    • /
    • 2023
  • Aluminum (Al) and copper(Cu) are non-ferrous alloys with excellent electrical and thermal conductivity but have relatively lower mechanical properties than iron alloys. Stainless steel(STS), an iron alloy, is a high-strength industrial material due to its excellent mechanical properties and corrosion resistance compared to non-ferrous Al and Cu. In this research combined Al, Cu, and STS to fabricate as a functionally graded material (FGM) through a powder metallurgical process. The produced FGM exhibited lightweight and excellent surface hardness compared to copper and iron alloys and also showed higher thermal conductivity than single Al and STS materials.

Effect of Pre-Heat Treatment on Bonding Properties in Ti/Al/STS Clad Materials (Ti/Al/STS 클래드재의 접합특성에 미치는 예비 열처리의 영향)

  • Bae, Dong-Hyun;Jung, Su-Jung;Cho, Young-Rae;Jung, Won-Sup;Jung, Ho-Shin;Kang, Chang-Yong;Bae, Dong-Su
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.573-579
    • /
    • 2009
  • Titanium/aluminum/stainless steel(Ti/Al/STS) clad materials have received much attention due to their high specific strength and corrosion-resisting properties. However, it is difficult to fabricate these materials, because titanium oxide is easily formed on the titanium surface during heat treatment. The aim of the present study is to derive optimized cladding conditions and thereupon obtain the stable quality of Ti/Al/STS clad materials. Ti sheets were prepared with and without pre-heat treatment and Ti/Al/STS clad materials were then fabricated by cold rolling and a post-heat treatment process. Microstructure of the Ti/Al and STS/Al interfaces was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersed X-ray Analyser(EDX) in order to investigate the effects of Ti pre-heat treatment on the bond properties of Ti/Al/STS clad materials. Diffusion bonding was observed at both the Ti/Al and STS/Al interfaces. The bonding force of the clad material with non-heat treated Ti was higher than that with pre-heat treated Ti before the cladding process. The bonding force decreased rapidly beyond $400^{\circ}C$, because the formed Ti oxide inhibited the joining process between Ti and Al. Bonding forces of STS/Al were lower than those of Ti/Al, because brittle $Fe_3Al$, $Al_3Fe$ intermetallic compounds were formed at the interface of STS/Al during the cladding process. In addition, delamination of the clad material with pre-heat treated Ti was observed at the Ti/Al interface after a cupping test.

A Study on the Surface Characterization of Fe-17wt.%Cr Steel for Cast-bonding of Al and Stainless Steel (Al과 스텐레스강의 주조접합을 위한 STS430(Fe-17wt.%Cr)강의 표면처리 특성연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.134-141
    • /
    • 2005
  • To overcome the undesirable deformation, peeling off and geometrical restrictions which were mainly caused by differences in thermal expansion coefficients during the cladding of aluminum strip and stainless strip, new processing method based on vacuum die casting is designed and implemented in fabricating Al/Fe-17wt%Cr steel(stainless steel). To increase cast-bonding ability, the surface of Fe-17wt%Cr steel is electrochemically etched to have optimum pit size and density. The optimum conditions to generate best pit are as follows: Solution: 1 M $Fecl_{3}$+1 M Nacl, Addition: $CuCl_{2}+HCl$, Current density: 80 $mA/cm^{2}$, Total current: 400 $coulomb/cm^{2}$, AC frequency :60 Hz.

Study on the Prevention of Crevice Corrosion for a Stainless Steel Heat Exchanger (스테인리스강 열교환기의 틈부식 방지에 관한 연구)

  • LIM, U-Joh;YUN, Byoung-Du
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.17 no.1
    • /
    • pp.106-114
    • /
    • 2005
  • This paper is a study on the prevention of crevice corrosion for a stainless steel heat exchanger in various pH solutions and with Cl ion concentrations. The electrochemical polarization test and crevice corrosion test of STS 304 for a heat exchanger were carried out. The crevice corrosion aspect, a passive behavior, crevice corrosion behavior, and corrosion protection characteristics of STS 304 using Al-alloy and Mg-alloy galvanic anode were considered. The main results are as follows: 1. The crevice corrosion of STS 304 occurs in the crevice and this corrosion increases pitting according to depth direction. On the other hand, the exterior crevice becomes passive. 2. With changing from a neutral to acid environment and increasing Cl ion concentration, the pitting potential of STS 304 lowers, and thus the crevice corrosion of STS 304 is sensitive. 3. The cathodic protection potential of STS 304 in the crevice is cathodically polarized by increasing Cl ion concentration. Therefore, an Al-alloy galvanic anode is more suitable than a Mg-alloy galvanic anode to protect the crevice corrosion of STS 304.