• Title/Summary/Keyword: Al-Ni 전극

Search Result 66, Processing Time 0.025 seconds

Charge and Discharge Characteristics of Microencapsulated Hydrogen Storage Alloy Electrodes for Secondary Batteries (마이크로캡슐화한 축전지용 수소저장합금 전극의 충·방전 특성)

  • CHOI, Seong-Soo;CHOI, Byung-Jin;YE, Byung-Joon;KIM, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.3 no.2
    • /
    • pp.45-54
    • /
    • 1992
  • An applicability microencapsulation, using electroless copper plating, of hydrogen storage alloy powder as an anode material for nickel-hydrogen secondary batteries was investigated. Alloys employed were $LaNi_{4.7}Al_{0.3}$ and $MmNi_{4.5}Al_{0.5}$(Mm=mischmetal) which have an appropriate equilibrium pressure and capacity. The microencapsulation of the alloy powder was found to accelerate initial activation of electrodes and to increase capacity which is about 285mAh/g for $LaNi_{4.7}Al_{0.3}$. In addition, other charge and discharge characteristics, such as polarization and flatness of charge and discharge potential, were improved due to the role of copper layer as a microcurrent collector and an oxidation barrier of the alloy powder. $MmNi_{4.5}Al_{0.5}$ alloy showed lower capacity than $LaNi_{4.7}Al_{0.3}$ because of higher equilibrium pressure. Cyclic characteristics of both alloys were somewhat poor because of mainly shedding and partial oxidation of alloy powder during the cycling. However, it was considered that the microencapsulation method is effective to improve the performances of the hydrogen storage alloy electrodes.

  • PDF

Effect of Vapor-Cooled Heat Stations in a Cryogenic Vessel (극저온액체 저장용기에서 열전도 차폐단의 영향)

  • Kim, S.Y.;Kang, B.H.;Choi, H.J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 1998
  • An experimental study on effect of vapor-cooled heat stations in a 5.5 liter cryogenic vessel has been performed. The cryogenic vessel is made of stainless steel of thickness of 1mm and insulated by the combined insulation of vacuum, MLI(multi-layer insulation) and vapor-cooled radiation shield. Vapor-cooled heat stations are also constructed based on the 1-dimensional thermal analysis to reduce the heat inleak through a filling tube. Thermal analysis indicates that the vapor-cooled heat stations can substantially enhance the performance of vessel for cryogenic fluids with high $C_p/h_{fg}$ where $C_p$ the specific heat and $h_{fg}$ the heat of vaporization, such as $LH_2$ and LHe. The experimental results for $LN_2$ shows that the total heat inleak into inner vessel consists of 14% radiation and 86% conduction through the filling tube. Therefore, it is expected that the conduction heat in leak of the vessel for high $C_p/h_{fg}$ cryogenic fluids can be significantly reduced. powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

A Study on electrical and optical characteristics of single EEFL using different electrode materials (여러 가지 외부 전극층 재료를 사용한 형광램프의 전기적 및 광학적 특성에 관한 연구)

  • Kim Soo-Yong;Jee Suk-Kun;Lee Oh-Keol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.878-881
    • /
    • 2006
  • In this paper, the luminance and resistance from different electrode materials of external electrode fluorescent lamp are measured and analyzed. New materials and process technology of external electrode are very important for the developed characteristics in lamp fabrication. In this experiments, three different types for the forming of external electrode are Cu and Al taping, silver paste, Ni and Cu electrode-less plating methods. In the measurements of luminance, the results of brightness by Ni and Au plating methods for the external electrode on lamp glass are presented and also compared with the results by the methods using different electrode materials. The measured resistance values of Ni and Au plating process showed a little bit higher than that of silver paste process in spite of developed results of brightness. But the Ni and Ni/Au plating processes are demonstrated best results and are also showed a little bit different brightness due to different previous sulfate etching treatments.

  • PDF

Characteristics Comparison of Fluorescent Lamp with External Electrode Materials for Digital (디지털용 외부 전극층 재료를 이용한 형광램프의 특성비교)

  • Kim, Soo-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.549-554
    • /
    • 2007
  • In this paper, the luminance and resistance from different electrode materials of external electrode fluorescent lamp are measured and analyzed. New materials and process technology of external electrode are very important for the developed characteristics in lamp fabrication. This experiment, three different types for the forming of external electrode are Cu and Al taping, silver paste, Ni and Cu electrode-less plating methods. In the measurement of luminance, the results of brightness by Ni and Au plating methods for the external electrode on lamp glass are presented and also compared with the results by the methods using different electrode materials. The measured resistance values of Ni and Au plating process showed a little bit higher than that of silver paste process in spite of developed results of brightness. The Ni and Ni/Au plating processes are demonstrated best results and also showed a little bit different brightness due to different previous surface etching treatments.

Electrode Characteristics of the (Mm)Ni5-Based Hydrogen Storage Alloys ((Mm)Ni5계 수소저장합금의 전극 특성)

  • Han, D.S.;Choi, S.J.;Chang, M.H.;Choi, J.;Park, C.N.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • The MmNi-based alloy electrode was studied for use as a negative electrode in Ni-MH battery. Alloys with $MmNi_5-_xM_x$(M=Co,Al,Mn) composition were synthesized, and their electrode charateristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in $MmNi_5-_xM_x$ increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is $MmNi_{3.5}Co_{0.7}Al_{0.5}Mn_{0.3}$.

  • PDF

The Study on Structural Change and Improvement of Electrochemical Properties by Co-precipitation Condition of Li[Ni0.8Co0.15Al0.05]O2 Electrode (Li[Ni0.8Co0.15Al0.05]O2 전극의 공침 조건을 통한 구조적 변화와 전기적 특성의 향상 고찰)

  • Im, Jung-Bin;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.98-103
    • /
    • 2011
  • [ $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ ]cathode material for lithium secondary battery is obtained using co-precipitation method. To determine the optimal metal solution concentration value, the CSTR coprecipitation was carried out at various concentration values(1-2 mol/L). The surface morphology of coated samples was characterization by SEM(scanning electron microscope) and XRD (X-Ray Diffraction)analyses. Impedance analysis and cyclic voltammogram presented that internal resistance of the cell was dependent upon the concentration of metal solution. such data is very helpful in determining the optimal content of metal solution concentration to enhancing electrochemical property by adjusting powder size distribution and crystal structure.

Effect of High Energy Ballmilling on the Discharge Properties of Mg-Ni Based Electrodes (고에너지 볼밀링이 Mg-Ni계 수소저장합금전극의 방전특성에 미치는 영향)

  • Han, Ji-Seong;Kim, Ki-Won;Ahn, In-Shup;Hur, Bo-Yong;Ahn, Hyo-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 1999
  • In order to study the effect of high energy ball milling on the $Mg_2Ni+Ni$, $Mg_2Ni+0.5Ni+0.5Al$ powders, we have investigated on the discharge properties, microstructures. The powder size of samples decreased as ball milling time. From the XRD results, the crystal structure of $Mg_2Ni+Ni$ mixed powders were changed to amorphous or nano-structure after 60hr ball milling. The discharge capacities of both $Mg_2Ni+Ni$ and $Mg_2Ni+0.5Ni+0.5Al$ powders increased, with increasing ballmilling time, the maximum capacity(342mAh/g) was shown for the 60 hrs ballmilled $Mg_2Ni+Ni$ sample. The capacity decreased drastically after a few charge-discharge cycles.

  • PDF

Extraction of Material Parameters and Design of Schottky Diode UV Detectors Using a Transfer Matrix Method (전달 행렬 방법을 이용한 Schottky 다이오드 자외선 광검출기의 물질특성 추출과 설계)

  • Kim Jin-Hyung;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.25-33
    • /
    • 2006
  • We have extracted the material parameters such as absorption coefficients of GaN, $Al_{0.2}Ga_{0.8}N$, and Schottky contact metal Ni of Schottky Diode UV-A and B detectors using a transfer matrix method (TMM). The ratios of the absorbed light to the total incident amount at the depletion regions of GaN and $Al_{0.2}Ga_{0.8}N$ have been calculated in order to obtain the spectral responsivity. Absorption coefficients of the materials have been obtained by fitting the simulated data with measured data. The depletion layer thickness has been obtanied by capacitance-voltage measurement. The results pave the way for the optimum design of UV Schottky detectors. Since the absorption coefficient of the Ni electrode is very high, its thickness is a major factor that determines the responsivity. It is possible to attain improved UV detectors using thinnest possible Ni electrodes and wide depletion regions of GaN and $Al_{0.2}Ga_{0.8}N$.

A Study on Ni Electroless Plating Process for Solder Bump COG Technology (COG용 Solder Bump 제작을 위한 Ni 무전해 도금 공정에 관한 연구)

  • Han, Jeong-In
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.794-801
    • /
    • 1995
  • To connect the driver IC and Al coated glass, a method has been developed to plate electrolessly Ni on Al/PR system. It Is necessary to pretreat Al to remove oxide film before plating. In order to find pretreatment process which does not damage photoresist or glass, alkaline and fluoride zincate process have been investigated. Because photoresist and aluminum thin film can easily dissolve in alkaline solution, it is considered that the fluoride zincate process was a suitable one. After immersion in the zincate solution containing 1.5 g/$\ell$ ammonium bifluoride and 100 g/$\ell$ zinc sulfate, electroless nickel plating could be performed. The additive in the zincate solution and thiourea in the plating solution increased smoothness of the plated surface. Acld dip could improve the uniformit of the surface.

  • PDF