• Title/Summary/Keyword: Al-MMC

Search Result 53, Processing Time 0.031 seconds

A Study on Fracture Toughness Properties of $Al_{18}B_4O_{33}/AC4CH$ by Binder Additives (바인더 첨가에 따른 $Al_{18}B_4O_{33}/AC4CH$의 파괴인성에 관한 연구)

  • Shin, Dong-In;Jung, Jae-Wook;Park, Won-Jo;Huh, Sun-Chul;Kim, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.61-66
    • /
    • 2003
  • In this paper, the effect of binder additive on the fracture toughness was metal matrix composite produced by squeeze casting method. In this study using the matrix is AC4CH and reinforcement used Aluminum borate whisker. Each MMC was produced by add inanimate binder ($SiO_2,\;Al2O_3,\;TiO_2$) to whiskers for increase the binding together of whiskers. Fracture toughness test were carry out in accordance with the ASTM E-399 standard test method, W=25mm, b=12.5mm CT(half size) specimen. However Base metal AC4CH was not meet the qualification of $P_m/P_Q<1.1$, so that test were performed $J_{IC}$ test. $K_{J_{IC}}$ value was measuring by $J_{IC}$ value change into $K_{IC}$. $J_{IC}$ test was carry out in accordance with the ASTM 1820.

  • PDF

Wear Behavior of Saffil/SiCp reinforced Metal Matrix Composites at the room temperature (Saffil/SiCp을 이용한 금속 복합재료의 상온 마모 거동)

  • 조종인;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.46-49
    • /
    • 2003
  • Aluminum based metal matrix composites(MMCs) are well known for their high specific strength, stiffness and hardness. They are gaining further importance because of their high wear resistance. In this study, Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15% and Al/Saffil-5%/SiC(particle type)-15% hybird MMCs' wear behavior were characterized by the pin-on-disk test under various normal load The superior wear resistance was exhibited at Al/Saffil-5%/SiC(particle type)-15% MMCs. And this MMCs' predominant wear mechanism is subsurface cracking in the low load wear regime. Others(Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15%) showed the similar wear resistance with each other at the same test condition. In the low load & room temperature condition, the wear resistance was improved due to the high hardness of the ceramic reinforcements. As the test load increased, the wear properties were governed by the wear properties of matrix.

  • PDF

Fabrication of Hybrid(HTZ/${Al_2}{O_3}p$) MMCs and Properties Degradation due to Aging (Hybrid(HTZ/${Al_2}{O_3}p$) MMC의 제작과 Aging에 따른 물성분석)

  • 남현욱;정성욱;정창규;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.130-133
    • /
    • 1999
  • 본 연구에서는 AC8A 알루미늄 합금과 HTZ 단섬유 및 알루미나(A12O3) 입자(particle)를 이용하여 HTZ 및 혼합 금속복합재료를 개발하고 정하중 시험을 통하여 개발된 재료의 상온 및 고온 기계적 물성을 규명하였으며, 개발된 금속복합재료가 고온에 노출되어 있을 경우 발생하는 aging에 의한 재료의 물성 변화를 분석하였다.

  • PDF

AE Characteristics for Fracture Mechanism of Al 7075/CFRP Hybrid Composite (Al 7075/CFRP Hybrid 복합재료의 파손특성에 대한 AE 특성 연구)

  • 이진경;이준현;송상헌;윤한기
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.268-271
    • /
    • 2001
  • When compared to other composite materials such as FRP and MMC, hybrid composite material is more attractive one due to the high specific strength and the resistance to fatigue. However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. In this study, AE technique has been used to clarify the fracture mechanism and the degree of damage for Al 7075/CFRP hybrid composite material. It was found that AE event, energy and amplitude among AE parameters were effective to evaluate fracture process of Al 7075/CFRP composite material. In addition, the relationship between the AE signal and the characteristics of failure surface using optical microscope was discussed.

  • PDF

Effect of Cutting Tool Materials on Surface Roughness and Cutting Forces in Machining of $Al-Si_3N_4$ Composite Produced by Powder Metallurgy

  • Ozcatalbas, Yusuf;Bahceci, Ersin;Turker, Mehmet
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1052-1053
    • /
    • 2006
  • Aluminum-based composites reinforced with various amounts of $\alpha-Si_3N_4$ were produced by powder metallurgy (P/M). The machinability properties of $MMC_s$ were determined by means of cutting forces and surface roughness. Machining tests were carried out by using PCD and K10 tools. Increasing of $Si_3N_4$ volume fraction in the matrix resulted in a decrease of the surface roughness and turning forces. PCD cutting tools showed better cutting performance than K10 tools.

  • PDF

Phase Transformation in Al-4at.%Zr Alloy during Mechanical Alloying and Heat-treatment Processes (Al-4at.%Zr합금의 기계적합금화 공정과 열처리과정에서 발생하는 상변화거동)

  • Park, Jae-Pil;Kim, Il-Ho;Kwun, S.I.
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.36-42
    • /
    • 2005
  • Four different mechanical alloying(MA) processes were employed to fabricate very fine intermetallic compound $Al_3Zr$ particles dispersed Al composite materials(MMC) with Al-4at.%Zr composition. Phase transformations including phase stability during MA and heat treatment processes were investigated. Part of Zr atoms were dissolved into Al matrix and part of them reacted with hydrogen produced by decomposition of PCA(methanol) to form hydride $ZrH_2$ during first MA process. These $ZrH_2$ hydrides disappeared when alloy powders were heat treated at $500^{\circC}$. Stable $Al_3Zr$ dispersoids with $DO_23$ structure were formed by heat treating the mechanically alloyed powders at $400^{\circC}$. On the other hand, metastable $Al_3Zr$dispersoids with $L1_2$ structure were formed during first MA of powers with Al-25at.%Zr composition. These metastable $Al_3Zr$ dispersoids transformed to stable $Al_3Zr$ with $DO_23$ structure when heat treated above $450^{\circC}$.

Fraccture Behavior of Recation Squeeze Cast ($AI_20_3{\cdot}SiO_2+Ni$)/Al Hybrid Metal Matrix Composites (반응 용탕단조한(AI203 . SIO2+Ni)/Al하이브리드 금속복합재료의 파괴거동 특성)

  • 김익우;김상석;박익민
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.67-70
    • /
    • 2000
  • Mechanical properties of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites fabricated by the reaction squeeze casting were compared with those of (15%$AI_20_3{\cdot}SiO_2$)/Al composites. Intermetallic compound formed by reaction between molten aluminum and reinforcing powder was uniformly distributed in the Al matrix. These intermetallic compounds were identified as $Al_3$NI using EDS and X-ray diffraction analysis. Microhardness and flexural strength of hybrid composites were higher than that of (15%$AI_20_3{\cdot}SiO_2$)/Al Composite. In-Situ fracture tests were Conducted on (15%$AI_20_3{\cdot}SiO_2$)/Al Composites and (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites to identify the microfracture process. It was identified from the in-situ fracture test of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al composites, microcracks were initiated mainly at the short fiber / matrix interfaces. As the loading was continued, the crack propagated mainly along the separated interfacial regions and the well developed shear bands. It was identified from the in-situ fracture test of (10%$AI_20_3{\cdot}SiO_2$+5%Ni)/Al hybrid composites, microcracks were initiated mainly by the short fiber/matrix interfacial debonding. The crack proceeded mainly through the intermetallic compound clusters

  • PDF

A Study on the Improvement of Fatigue Strength in Particulate Reinforced Metal Matrix Composites at Elevated Temperatures (입자강화 금속기 복합재료의 고온 피로강도 향상에 관한 연구)

  • Sin, Hyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1146-1154
    • /
    • 2000
  • Fatigue strength of NiAl and Ni$_3$Al particulate reinforced aluminum alloy composites fabricated by the diecasting method was examined at room and elevated temperatures. The results were compared wit h that of SiC particulate reinforced one. The particulate reinforced composites showed some improvement in the static and fatigue strength at elevated temperatures when compared with that of Al alloy. The composites reinforced by intermetallic compound particles showed good fatigue strengths at elevated temperatures especially $Ni_3AI_{p}/Al$ alloy composite showed good fatigue limit up to high temperature of 30$0^{\circ}C$. Adopting intermetallic compound particle as a reinforcement phase, it will be possible to develop MMC representing better fatigue property at elevated temperature.

A Study of Threshold stress during High Temperature Creep of $\textrm{BN}_f$/Al-5, wt% Mg Metal Matrix Composite (BN 입자 강화 Al-5wt% Mg 기지 복합재료의 고온 크립 변형에서의 임계응력 해석)

  • Song, M.H.;Kwon, H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.187-191
    • /
    • 2000
  • High temperature creep behaviour of Al-5 wt% Mg alloy reinforced with 7.5% BN flakes was studied. The composite specimens showed two main creep characteristics : (1) the value of the apparent stress exponent of the composite was high and varied with applied stress (2) the apparent activation energy for creep was much larger than that for self-diffusion in aluminum The true stress exponent of the composite was set equal to 5. Temperature dependence of the threshold stress of the composite was very strong. Which could not be rationalized by allowing for the temperature dependence of the elastic modulus change. AIN particles which were incorporated into the Al matrix during fabrication of the composite by the PRIMEXTM method were found to be effective barriers to dislocation motion and to give rise the threshold stress during creep of the composite

  • PDF

Fatigue Strength Characteristic of Metal Matrix Composite Material in $9Al_2\;.\;2B_2O_4$/ AC4CH ($9Al_2\;.\;2B_2O_4$/ AC4CH 금속기 복합재료의 피로강도 특성)

  • Park, Won-Jo;Lee, Kwang-Young;Huh, Sun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1583-1589
    • /
    • 2001
  • Metal matrix composites with whisker reinforcements have significant potentials for demanding mechanical applications including defense, aerospace, and automotive industries. Especially metal matrix composites, which are reinforced with aluminum borate whisker, have been used leer the part of piston head in automobile because of good specific strength and wear resistance. In this study, AC4CH-based metal matrix composites with $Al_{18}$B$_{4}$ $O_{33}$ reinforcement have been produced using squeeze casting method, after T6 heat treatment, we evaluated fatigue life property of matrix and MMC composite and investigated fracture mechanism.m.