• Title/Summary/Keyword: Al-Fe

Search Result 2,729, Processing Time 0.032 seconds

$NiFe/Co/Al_2O_3/Co/IrMn$ 접합의 터널링 자기저항효과

  • 홍성민;이한춘;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.291-295
    • /
    • 1999
  • $NiFe/Co/Al_2O_3/Co/IrMn$ tunneling junctions were grown on (100)Si wafer and their spin-valve tunneling magnetoresistance (TMR) was studied. The tunneling junctions were grown by using a 5-gun RF/DC magnetron sputter. $Al_2O_3$ barrier layer was formed by exposing Al layer to oxygen atmosphere at 6$0^{\circ}C$ for 72 hours. Strong exchange coupling interaction is observed between the ferromagnetic Co and the antiferromagnetic IrMn of Co/IrMn bilayer when IrMn is 100$\AA$ thick. $NiFe(183\;{\AA})/Co(17\;{\AA})/Al_2O_3(16\;{\AA})/Co(100\;{\AA})/IrMn(100\;{\AA})$ tunneling junction shows best TMR ratio of about 10% in the applied magnetic field range of $\pm$20 Oe. The TMR ratio is improved about 23% and electrical resistance is decreased about 34% when annealed at 200 $^{\circ}C$ for 1 hour in magnetic field of 330 Oe, parallel to the bottom electrode. With increasing the active area of junction the TMR ratio increases while electrical resistance decreases.

  • PDF

Occurrence and Chemical Composition of White Mica and Chlorite from Laminated Quartz Vein of Unsan Au Deposit (운산 금 광상의 엽리상 석영맥에서 산출되는 백색운모와 녹니석의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong, Kwangyang) in Korea. The geology of this deposit consists of series of host rocks including Precambrian metasedimentary rock and Jurassic Porphyritic granite. The deposit consists of Au-bearing quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it is an orogenic-type deposit. Quartz veins are classified as 1) galena-quartz vein type, 2) pyrrhotite-quartz vein type, 3) pyrite-quartz vein type, 4) pegmatic quartz vein type, 5) muscovite-quartz vein type and 6) simple quartz vein type based on mineral assembles. The studied quartz vein is pyrite-quartz vein type which occurs as sericitization, chloritization and silicification. The white mica from stylolitic seams of laminated quartz vein occurs as fine or medium aggregate associated with white quartz, pyrite, chlorite, rutile, monazite, apatite, K-feldspar, zircon and calcite. The structural formular of white mica from laminated quartz vein is (K0.98-0.86Na0.02-0.00Ca0.01-0.00Ba0.01-0.00 Sr0.00)1.00-0.88(Al1.70-1.57Mg0.22-0.09Fe0.23-0.10Mn0.00Ti0.04-0.02Cr0.01-0.00V0.00Ni0.00)2.06-1.95 (Si3.38-3.17Al0.83-0.62)4.00O10(OH2.00-1.91F0.09-0.00)2.00. It indicated that white mica of laminated quartz vein has less K, Na and Ca, and more Si than theoretical dioctahedral micas. Compositional variations in white mica from laminated quartz vein are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution. The structural formular of chlorite from laminated quartz vein is((Mg1.11-0.80Fe3.69-3.14Mn0.01-0.00Zn0.01-0.00K0.07-0.01Na0.01-0.00Ca0.04-0.01Al1.66-1.09)5.75-5.69 (Si3.49-2.96Al1.04-0.51)4.00O10 (OH)8. It indicated that chlorite of laminated quartz vein has more Si than theoretical chlorite. Compositional variations in chlorite from laminated quartz vein are caused by phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV) and octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. Therefore, laminated quartz vein and alteration minerals of the Unsan Au deposit was formed during ductile shear stage of orogeny.

Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics (액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성)

  • Koo, Hye Young;Yun, Jung-Yeul;Yang, Sangsun;Lee, Hye-Moon
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

Effect of Process Parameters on Laser Overlay Behavior of Fe-based Alloy Powder on Aluminum Substrate (공정 변수에 따른 Al 모재와 Fe계 합금 분말의 레이저 오버레이층 거동)

  • Yoo, Yeon-Gon;Kang, Nam-Hyun;Kim, Cheol-Hee;Kim, Jeong-Han;Kim, Mok-Soon
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.30-36
    • /
    • 2007
  • A joining of dissimilar metal combination faces significant problems such as poor strength and cracking associated with brittle intermetallic compounds(IMC) formed. An application of laser allows low heat input; leading to less dilution and smaller heat affected zone. The $CO_2$ laser overlay was conducted on an AC2B alloy with feeding Fe-based powders. The overlay area was significantly influenced from the travel velocity rather than the powder feeding rate. The interface between the overlay and substrate consisted of the hard and brittle IMC($FeAl_3,\;Fe_3Al,\;Fe_2Al_5$), which initiating and propagating the crack. The reciprocating test for the slide wear was conducted on a multi-pass overlay experiment. Comparing with the multi-pass overlay with no overlap, the overlay with 50% overlap showed better wear resistance.

Identification Factor Development of Particulate Matters Emitted from Coal-fired Power Plant by FE-SEM/EDX Analysis (FE-SEM/EDX 분석법을 이용한 석탄화력발전소에서 배출되는 입자상물질의 확인자 개발)

  • Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1333-1339
    • /
    • 2017
  • Coal-fired power plants emit various Particulate Matter(PM) at coal storage pile and ash landfill as well as the stack, and affect the surrounding environment. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray analyzer(FE-SEM/EDX) were used to develop identification factor and the physico-chemical analysis of PM emitted from a power plant. In this study, three samples of pulverized coal, bottom ash, and fly ash were analyzed. The pulverized coal was spherical particles in shape and the chemical composition of C-O-Si-Al and C/Si and C/Al ratios were 200~300 on average. The bottom ash was spherical or non-spherical particles in shape, chemical composition was O-C-Si-Al-Fe-Ca and C/Si and C/Al ratios were $4.3{\pm}4.6$ and $8.8{\pm}10.0$. The fly ash was spherical particles in shape, chemical composition was O-Si-Ai-C-Fe-Ca and C/Si and C/Al ratios were $0.5{\pm}0.2$ and $0.8{\pm}0.5$.

Oxidation of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-0.45%C Alloys at 550-650 ℃

  • Park, Soon Yong;Xiao, Xiao;Kim, Min Ji;Lee, Geun Taek;Hwang, Dae Ho;Woo, Young Ho;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • Alloys of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-(0.4-0.5)%C were oxidized at 550 ℃ to 650 ℃ for 20 h to understand effects of alloying elements on oxidation. Their oxidation resistance increased with increasing Mn level to a small extent. Their oxidation kinetics changed from parabolic to linear when Mn content was decreased and temperature was increasing. Oxide scales primarily consisted of Fe2O3, Mn2O3, and MnFe2O4 without any protective Al-bearing oxides. During oxidation, Fe, Mn, and a lesser amount of Al diffused outward, while oxygen diffused inward to form internal oxides. Both oxide scales and internal oxides consisted of Fe, Mn, and a small amount of Al. The oxidation of Mn and carbon transformed γ-matrix to α-matrix in the subscale. The oxidation led to the formation of relatively thick oxide scales due to inherently inferior oxidation resistance of alloys and the formation of voids and cracks due to evaporation of manganese, decarburization, and outward diffusion of cations across oxides.

Nano-Granular Co-Fe-AI-O Soft Ferromagnetic Thin Films for GHz Magnetic Device Applications

  • Sohn, Jae-Cheon;Byun, Dong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.143-147
    • /
    • 2006
  • Co-Fe-Al-O nanogranular thin films were fabricated by RF-magnetron sputtering under an $Ar+O_2$ atmosphere. High resolution transmission electron microscopy revealed that the Co-Fe-Al-O films are composed of bcc (Co, Fe) nanograins finer than 5 nm and an Al-O amorphous phase. A very large electrical resistivity of $374{\mu}{\Omega}cm$ was obtained, together with a large uniaxial anisotropy field of 50 Oe, a hard axis coercivity of 1.25 Oe, and a saturation magnetization of 12.9 kG. The actual part of the relative permeability was measured to be 260 at low frequencies and this value was maintained up to 1.3 GHz. The ferromagnetic resonance frequency was 2.24 GHz. The resulting Co-Fe-Al-O nanogranular thin films with a high electrical resistivity and high resonance frequency are considered to be suitable for GHz magnetic device applications.

A Study on the Treatment of the Acid Mine Drainage using the Steel Mill Slag (제강 슬래그를 애용한 산성광산배수(AMD)의 처리에 관한 연구)

  • 권순동;김선준
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.206-212
    • /
    • 1999
  • In order to evaluate the applicability of steel mill slag as a AMD (Acid Mine Drainage) neutralizer and to compare capacity of slag with that of limestone lab scale experiments were conducted. The fixed treatment experiments of AMD with slag and limestone separately for 24 hours under the stagnant condition showed that slag has higher capacity of pH increase and removal of Fe. Al and other trace elements. During the 10 days continuous step experiment the pH has been maintained and any decrease in the removal capacity of Fe and Al has not bun observed. In the trace element removal experiment slag showed higher capacity for removal of Ni, Co. Cu and Zn than limestone. The removal of trace element was more effective in AMD than in distilled water that the pH was adjusted to the same level of AMD (synthetic acid solution). It means that Fe and Al in AMD adsorbed trace elements during or after precipitation as oxide forms. In the size effect experiment, the slag of the smaller size with larger specific surface area exhibited higher capacity of pH increase and removal efficiencies of Fe. Al and other trace elements.

  • PDF

Structural Characteristics, Microstructure and Mechanical Properties of Fe-Cr-Al Metallic Foam Fabricated by Powder Alloying Process (분말 합금법으로 제조된 Fe-Cr-Al 금속 다공체의 구조, 미세조직 및 기계적 특성)

  • Kim, Kyu-Sik;Kang, Byeong-Hoon;Park, Man-Ho;Yun, Jung-Yeul;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • The Fe-22wt.%Cr-6wt.%Al foams were fabricated via the powder alloying process in this study. The structural characteristics, microstructure, and mechanical properties of Fe-Cr-Al foams with different average pore sizes were investigated. Result of the structural analysis shows that the average pore sizes were measured as 474 ㎛ (450 foam) and 1220 ㎛ (1200 foam). Regardless of the pore size, Fe-Cr-Al foams had a Weaire-Phelan bubble structure, and α-ferrite was the major constituent phase. Tensile and compressive tests were conducted with an initial strain rate of 10-3/s. Tensile yield strengths were 3.4 MPa (450 foam) and 1.4 MPa (1200 foam). Note that the total elongation of 1200 foam was higher than that of 450 foam. Furthermore, their compressive yield strengths were 2.5 MPa (450 foam) and 1.1 MPa (1200 foam), respectively. Different compressive deformation behaviors according to the pore sizes of the Fe-Cr-Al foams were characterized: strain hardening for the 450 foam and constant flow stress after a slight stress drop for the 1200 foam. The effect of structural characteristics on the mechanical properties was also discussed.