• Title/Summary/Keyword: Al-Al bond

Search Result 335, Processing Time 0.028 seconds

A study on the Structure of (62-x)CaO·38Al2O3 ·xBaO Glasses by Molecular Dynamics Simulation (분자동력학법에 의한(62-x)CaO·38Al2O3 ·xBaO 유리의 구조 분석)

  • Lee, Seong-Joo;Kang, Eun-Tne
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.175-181
    • /
    • 2007
  • Molecular dynamics simulation (MD) of $(62-x)CaO{\cdot}38Al_{2}O_{3}{\cdot}xBaO$ glasses has been carried out using empirical potentials with the covalent term. The simulations closely reproduce the total neutron correlation functions of glass with 5 mol% BaO and physical properties of these glasses such as elastic constants. For these glasses, aluminum is tetrahedrally coordinated by oxygen, but there is a part of five-fold and six-fold coordination of aluminum. There are no major changes to the mid-range structure of glass, as barium is substituted for calcium. To predict the barium coordination number, we have used the bond valence (BV) theory and also compared the results of simulation with Bond valence. The coordination number for oxygen around barium atoms is close to 8 and the average distance of barium and oxygen is nearly 2.80 A. The viscosity of these glasses increases with the content of barium oxide substituted for calcium oxide.

Effect of Modifiers on the Electrical Resistivity of $SiO_2-Al_2O_3-B_2O_3-RO-Na_2O$ Glasses ($SiO_2-Al_2O_3-B_2O_3-RO-Na_2O$계 유리의 전지저항에 미치는 수식체의 영향)

  • 김대기;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.385-390
    • /
    • 1996
  • The electrical resistivity of the ceramic glaze coated on ceramic substrate plays an important role on the characteristics of the thick and thin film electrical circuits. In this study the effects of the various modifiers on the electrical resistivity were examined in SiO2-Al2O3-B2O3-RO-Na2O (RO=CaO , SrO, BaO, PbO) glass system. In alkali free glasses where divalent cations are responsible for electrical conduction the electrical conductivity of th glasses increased with the ionic size of divalent cations due to the decrease in the bond strength between oxyben and divalent cation. In Na2O containing glasses however where Na+ ion is responsible for electrical conduction the ionic conductivity decreased with the ionic size of divalent cations because the blocking effect of the cations on Na+ ion movement increased with larger divalent cations. Na+ ionic conduction also depended on the glass structure relaxation due to the corrdination number changes of B2O3 and Al2O3 which varied with the NaO2 content in the glass.

  • PDF

Effect of Hot-stamping Heat Treatment on the Microstructure of Al-Segregated Zone in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel (Al-Si 도금된 보론강과 Zn 도금된 DP강 TWB 레이저 용접부내의 Al-편석부 미세조직에 미치는 핫스탬핑 열처리의 영향)

  • Jung, Byung Hun;Kong, Jong Pan;Kang, Chung Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.455-462
    • /
    • 2012
  • Al-Si coated boron steel and Zn coated DP steel plates were laser-welded to manufacture a Tailor Welded Blank (TWB) for a car body frame. Hot-stamping heat treatment ($900^{\circ}C$, 5 min) was applied to the TWB weld, and the microstructural change and transformation mechanism were investigated in the Al-rich area near the bond line of the Al-Si coated steel side. There was Al-rich area with a single phase, $Fe_3(Al,Si)$, which was transformed to ${\alpha}-Fe$ (Ferrite) after the heat treatment. It could be explained that the $Fe_3(Al,Si)$ phase was transformed to ${\alpha}-Fe$ during heat treatment at $900^{\circ}C$ for 5 min and the resultant ${\alpha}-Fe$ phase was not transformed by rapid cooling. Before the heat treatment, the microstructures around the $Fe_3(Al,Si)$ phase consisted of martensite, bainite and ${\alpha}-Fe$ while they were transformed to martensite and ${\delta}-Fe$ after the heat treatment. Due to the heat treatment, Al was diffused to the $Fe_3(Al,Si)$ and this resulted in an increase of Al content to 0.7 wt% around the Al-rich area. If the weld was held at $900^{\circ}C$ for 5 min it was transformed to a mixture of austenite (${\gamma}$) and ${\delta}-Fe$, and only ${\gamma}$ was transformed to the martensite by water cooling while the ${\delta}-Fe$ was remained unchanged.

Effect of Pressure on the Solubilities of Protein Model Compounds (단백질 모델 화합물들의 압력에 따르는 용해도의 변화)

  • Sun Ho Song;Keon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.31-37
    • /
    • 1985
  • N-Acetyl-1-phenylalanyl-1-phenylalanine methyl ester (APhPhMe), N-acetyl-l-phenylalanine methyl ester (APhMe) and N-acetyl-1-phenylalanyl-1-alanine methyl ester (APhAlMe) were used as model compounds to investigate a protein denaturation under various temperatures and pressures. Overall, the solubility of APhPhMe in water increased with increasing pressure and that of APhMe decreased. However, the solubility of APhAlMe was nearly same. The values of volume change of APhPhMe were -0.9, -1.47, -1.09, -1.52 ml/mole at 20, 30, 40 and 50$^{\circ}C$, respectively, and those of APhMe were +6.0, +7.0, +7.5 ml/mole at 20, 30 and 40$^{\circ}C$, respectively. But those of APhAlMe were nearly zero at the measured temperature. The experimental result seems to be explained by the hydrophobic interaction and hydrogen bond of peptide bonds. In the compounds which have only peptide bonds and which have both a pretty large hydrophobic group and a peptide bond in the molecules, the hydrogen bond between peptide bonds is more dominant than the hydrophobic interaction. However, when the number of peptide bond and hydrophobic group increase simultaneously, the hydrophobic interaction seems to be more dominant.

  • PDF

The Hydrogen Binding Property Study by Density Functional Theory for Zr, V, Fe and Al (밀도 함수를 이용한 지르코니움, 바나듐, 철과 수소와의 반응성 연구)

  • Park, Taesung;Lee, Taeckhong
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.602-608
    • /
    • 2014
  • The sequence of bond overlap population of metal hydrogen binding is in Al-H > Fe-H > Zr-H > V-H. This results shows the binding energy of Al-H is the biggest in this metals (Al, Fe, Zr, and V) and hydrogen interaction. The Vanadium-hydrogen binding shows the weakest binding energy compared to other metals and it causes easy hydrogen desorption from the corresponding metals. The net charge of Al-H show the biggest value of 0.2248 and the severe localizations of electrons around aluminum and imply strongest covalent binding nature in these metals. This study is applicable to the purification of hydrogen in other bulk gas.

Effective surface passivation of crystalline silicon by ALD $Al_2O_3$

  • Jang, Hyo-Sik;Sin, Ung-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.271-271
    • /
    • 2010
  • 고효율 실리콘 태양전지를 제작하기 위하여 surface passivation, 레이저와 lithography기술들이 연구되어 지고 있다. 결정질 실리콘 태양전지의 기판의 두께가 점점 얇아지면서 surface-to-volume 비율이 증가되어 surface passivation은 매우 중요하다. surface passivation은 크게 2가지 방법으로 진행되고 있으다. 첫 번째는 Si의 dangling bond의 passivation과 surface recombination process 제어에 기초를 두고 있다. 일반적으로 박막을 이용한 실리콘 passivation은 $SiO_2$, SiN, a-Si, $Al_2O_3$박막 4가지가 이용되어 왔다. 본 연구에서는 p-type SoG기판위에 원자층 증착법(ALD)을 이용하여 $Al_2O_3$박막의 negative fixed charge의 internal electric field로 surface passivation을 연구하였다. TMA와 $H_2O/O_3$을 사용하여 ALD $Al_2O_3$를 10~30nm두께를 갖도록 증착하였다. 표면 처리 조건, $Al_2O_3$박막 두께, ALD 공정 조건과 후열처리등에 따른 실리콘의 특성, carrier lifetime변화를 측정하여 효과적인 field induced passivation을 제시하고자 한다.

  • PDF

DFT Study for Adsorption and Decomposition Mechanism of Trimethylene Oxide on Al(111) Surface

  • Ye, Cai-Chao;Sun, Jie;Zhao, Feng-Qi;Xu, Si-Yu;Ju, Xue-Hai
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2013-2018
    • /
    • 2014
  • The adsorption and decomposition of trimethylene oxide ($C_3H_6O$) molecule on the Al(111) surface were investigated by the generalized gradient approximation (GGA) of density functional theory (DFT). The calculations employed a supercell ($6{\times}6{\times}3$) slab model and three-dimensional periodic boundary conditions. The strong attractive forces between $C_3H_6O$ molecule and Al atoms induce the C-O bond breaking of the ring $C_3H_6O$ molecule. Subsequently, the dissociated radical fragments of $C_3H_6O$ molecule oxidize the Al surface. The largest adsorption energy is about -260.0 kJ/mol in V3, V4 and P2, resulting a ring break at the C-O bond. We also investigated the decomposition mechanism of $C_3H_6O$ molecules on the Al(111) surface. The activation energies ($E_a$) for the dissociations V3, V4 and P2 are 133.3, 166.8 and 174.0 kJ/mol, respectively. The hcp site is the most reactive position for $C_3H_6O$ decomposing.

Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials

  • Sismanoglu, Soner;Gurcan, Aliye Tugce;Yildirim-Bilmez, Zuhal;Turunc-Oguzman, Rana;Gumustas, Burak
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.1
    • /
    • pp.22-32
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the microshear bond strength (µSBS) of four computer-aided design/computer-aided manufacturing (CAD/CAM) blocks repaired with composite resin using three different surface treatment protocols. MATERIALS AND METHODS. Four different CAD/CAM blocks were used in this study: (1) flexible hybrid ceramic (FHC), (2) resin nanoceramic (RNC), (c) polymer infiltrated ceramic network (PICN) and (4) feldspar ceramic (FC). All groups were further divided into four subgroups according to surface treatment: control, hydrofluoric acid etching (HF), air-borne particle abrasion with aluminum oxide (AlO), and tribochemical silica coating (TSC). After surface treatments, silane was applied to half of the specimens. Then, a silane-containing universal adhesive was applied, and specimens were repaired with a composite, Next, µSBS test was performed. Additional specimens were examined with a contact profilometer and scanning electron microscopy. The data were analyzed with ANOVA and Tukey tests. RESULTS. The findings revealed that silane application yielded higher µSBS values (P<.05). All surface treatments were showed a significant increase in µSBS values compared to the control (P<.05). For FHC and RNC, the most influential treatments were AlO and TSC (P<.05). CONCLUSION. Surface treatment is mandatory when the silane is not preferred, but the best bond strength values were obtained with the combination of surface treatment and silane application. HF provides improved bond strength when the ceramic content of material increases, whereas AlO and TSC gives improved bond strength when the composite content of material increases.

AN EXPERIMENTAL STUDY ON THE BOND STRENGTH OF ETCHED CAST RESTORATION USING DIFFERENT METAL SURFACE TREATMENTS (수지접합 수복물용 합금의 피착면처리에 따른 결합력에 관한 실험적 연구)

  • Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.13-22
    • /
    • 1991
  • This study investigated the effects of surface treatment on the tensile bond strength of resinbonded prosthesis. The Rexillium III specimens were treated with $50{\mu}m\;Al_2O_3$ blasting. Type IV gold alloy specimens were treated with $400^{\circ}C$ heating and tin plating method. All specimens were bonded with MBAS composite resin cement and followed by immersion test into the $37^{\circ}C$ water bath for 7 days. The specimens were debonded in tension with an Instron machine and observed with SEM. The modes of failure were recorded also. The following conclusions were obtained : 1. The tensile bond strength decreased in following order. $50{\mu}m\;Al_2O_3$ basted Resillium III group, Type IV gold alloy group treated with $400^{\circ}C$ heat and tin plating type IV gold alloy group, and statistical significant differences were observed(p<0.05). 2. The tensile bond strength decreased in all groups after 7 days immersion test, but statistical significant differences were observed in Rexillium III specimens only. 3. The sharp and irregular surface were observed in Rexillium III, but $400^{\circ}C$ heat treated and tin plated groups had round and broad surface in SEM. 4. The models of bond failure were cohesive-adhesive failure mainly.

  • PDF

Experimental Study on the Corrosion Behavior of Al Coatings Applied by Plasma Thermal Arc Spray under Simulated Environmental Conditions (모사 부식 환경에서 플라즈마 아크용사에 의한 Al 코팅의 부식특성에 관한 실험적 연구)

  • Jeong, Hwa-Rang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.559-570
    • /
    • 2023
  • The corrosion of structural steel used in the construction industry is increasing due to the industrialization where many aggressive ions released in the atmosphere. Therefore, in the present study Al coating was deposited by arc and plasma arc thermal spray process and compared their effectiveness in simulated weathering condition i.e. Society of Automotive Engineers(SAE) J2334 solution which mostly contain Cl- and CO32- ions. Different analytical techniques have been used to characterize the coating and draw the corrosion mechanism. The Al coating deposited by plasma arc thermal spray process exhibited uniform, dense and layer by layer deposition resulting higher bond adhesion values. The open circuit potential(OCP) of Al coating deposited this process is exhibited more electropositive values than arc thermal spray process in SAE J2334 solution with immersion periods. The total impedance of plasma arc thermal spray process exhibited higher than arc thermal spray process. The corrosion rate of the plasma arc thermal sprayed Al coating is reduced by 20% compared to arc thermal spray process after 23 days of immersion in SAE J2334 solution.