DOI QR코드

DOI QR Code

A study on the Structure of (62-x)CaO·38Al2O3 ·xBaO Glasses by Molecular Dynamics Simulation

분자동력학법에 의한(62-x)CaO·38Al2O3 ·xBaO 유리의 구조 분석

  • Lee, Seong-Joo (R&D Center, Koreaberal Co. Ltd.) ;
  • Kang, Eun-Tne (Division of Nano & Advanced Materials Science and Engineering, Gyeongsang National University, Engineering Research Institute, Gyeongsang National University)
  • 이성주 (한국베랄(주)) ;
  • 강은태 (경상대학교 나노.신소재공학부, 경상대학교 공학원)
  • Published : 2007.03.31

Abstract

Molecular dynamics simulation (MD) of $(62-x)CaO{\cdot}38Al_{2}O_{3}{\cdot}xBaO$ glasses has been carried out using empirical potentials with the covalent term. The simulations closely reproduce the total neutron correlation functions of glass with 5 mol% BaO and physical properties of these glasses such as elastic constants. For these glasses, aluminum is tetrahedrally coordinated by oxygen, but there is a part of five-fold and six-fold coordination of aluminum. There are no major changes to the mid-range structure of glass, as barium is substituted for calcium. To predict the barium coordination number, we have used the bond valence (BV) theory and also compared the results of simulation with Bond valence. The coordination number for oxygen around barium atoms is close to 8 and the average distance of barium and oxygen is nearly 2.80 A. The viscosity of these glasses increases with the content of barium oxide substituted for calcium oxide.

Keywords

References

  1. W. H. Dunbaugh, 'Infrared Transmitting Glasses,' Opt. Eng., 24 257-62 (1978)
  2. L. D. Pye, 'Aluminate Glasses-A Review,' Proc. SPIE-Int. Soc. Opt. Eng., 929 149-156 (1988)
  3. J. E. Shelby and R. M. Sliaty, 'Calcium Galliaaluminate Glasses,' J. Appl. Phys., 68 3207-11 (1990) https://doi.org/10.1063/1.346371
  4. M. E. Lines, J. B. MacChesney, K. B. Lyons, A. J. Bruce, A. E. Miller, and K. Nassau, 'Calcium Aluminate Glasses as Potential Ultralow-Loss Optical Materials at 1.5-1.9 ${\mu}m$,' J. Non-Cryst. Solids, 107 251-60 (1989) https://doi.org/10.1016/0022-3093(89)90470-5
  5. F. T. Wallenberger, N. E. Weston, K. Motzfeldt, and D. G. Swartzfager, 'Inviscid Melt Spinning of Alumina Fibers: Chemical Jet Stabilization,' J. Am. Ceram. Soc., 75 [3] 629- 36 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb07852.x
  6. P. L. Higby, C. I. Merzbacher, I. D. Aggarwal, and E. J. Friebele, 'Effect of Small Silica Additions on the Properties and Structure of Calcium Aluminate Glasses,' SPIE Proc., 1327 198-202 (1990) https://doi.org/10.1117/12.22531
  7. W. A. King and J. E. Shelby, 'Strontium Calcium Aluminate Glasses,' Phys. Chem. Glasses, 37 [1] 1-3 (1996)
  8. E. V. Uhlmann, M. C. Weinberg, N. J. Kreidl, and A. A. Goktas, 'Glass-Forming Ability in Calcium Aluminate- Based Systems,' J. Am. Ceram. Soc., 76 [2] 449-53 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03805.x
  9. Y. M. Sung and S. J. Kwon, 'Glass-Forming Ability and Stability of Calcium Aluminate Optical Glasses,' J. Mater. Sci., 18 1267-69 (1999) https://doi.org/10.1023/A:1006680506578
  10. J. E. Shelby and M. M. Wierzbicki, 'Formation and Properties of Soda Lime Aliminate Glasses,' Phys. Chem. Glasses, 36 [1] 17-21 (1995)
  11. K. Kawamura, JCPE #026, (1992-2000)
  12. H. Sato, A. Yamagishi, and K. Kawamura, 'Molecular Simulation for Flexibility of a Single Clay Layer,' J. Phys. Chem. B, 105 7990-97 (2001) https://doi.org/10.1021/jp004491l
  13. E. T. Kang, S. J. Lee, and A. C. Hannon, 'Molecular Dynamics of Calcium Aluminate Glasses,' J. Non-Cryst. Solids, 352 725-36 (2006) https://doi.org/10.1016/j.jnoncrysol.2006.02.013
  14. J. Rybicki, G. Bergmariski, and G. Mancini, 'A New Program Package for Investigation of Medium-Range Order in Computer-Simulated Solids,' J. Non-Cryst. Solids, 293-295 758-63 (2001) https://doi.org/10.1016/S0022-3093(01)00786-4
  15. D. A. Keen, 'A Comparison of Various Commonly Used Correlation Functions for Describing Total Scattering,' J. Appl. Cryst., 34 172-77 (2001) https://doi.org/10.1107/S0021889800019993
  16. A. C. Wright, 'Diffraction Studies of Glass Structure,' J. Non-Cryst. Solids, 123 129-48 (1990) https://doi.org/10.1016/0022-3093(90)90779-L
  17. A. C. Wright, 'The Comparison of Molecular Dynamics Simulations with Diffraction Experiments,' J. Non-Cryst. Solids, 159 264-68 (1993) https://doi.org/10.1016/0022-3093(93)90232-M
  18. N. E. Brese and M. O'Keeffe, 'Bond-Valence Parameters for Solids,' Acta Cryst., B47 192-97 (1991) https://doi.org/10.1107/S0108768190011041
  19. A. C. Hannon and J. M. Parker, 'The Structure of Aluminate Glasses by Neutron Diffraction,' J. Non-Cryst. Solids, 274 102-09 (2000) https://doi.org/10.1016/S0022-3093(00)00208-8
  20. T. Schaller, J. F. Stebbins, and M. C. Wilding, 'Cation Clustering and Formation of Free Oxide Ions in Sodium and Potassium Lanthanum Silicate Glasses: Nuclear Magnetic Resonance and Raman Spectroscopic Findings,' J. Non- Cryst. Solids, 243 146-57 (1999) https://doi.org/10.1016/S0022-3093(98)00838-2
  21. C. A. Scamehorn and C. A. Angell, 'Viscosity-Temperature Relations and Structure in Fully Polymerized Aluminosilicate Melts from Ion Dynamics Simulation,' Geochim. Cosmochim. Acta, 55 721-30 (1991) https://doi.org/10.1016/0016-7037(91)90336-4