• Title/Summary/Keyword: Al-1%Si

Search Result 2,320, Processing Time 0.035 seconds

Via-size Dependance of Solder Bump Formation (비아 크기가 솔더범프 형성에 미치는 영향)

  • 김성진;주철원;박성수;백규하;이상균;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • We investigate the via-size dependance of as-electroplated- and reflow-bump shapes for realizing both high-density and high-aspect ratio of solder bump. The solder bump is fabricated by subsequent processes as follows. After sputtering a TiW/Al electrode on a 5-inch Si-wafer, a thick photoresist for via formation it obtained by multiple-codling method and then vias with various diameters are defined by a conventional photolithography technique using a contact alinger with an I-line source. After via formation the under ball metallurgy (UBM) structure with Ti-adhesion and Cu-seed layers is sputtered on a sample. Cu-layer and Sn/pb-layer with a competition ratio of 6 to 4 are electroplated by a selective electroplating method. The reflow-bump diameters at bottom are unchanged, compared with as-electroplated diameters. As-electroplated- and reflow-bump shapes, however, depend significantly on the via size. The heights of as-electroplated and reflow bumps increase with the larger cia, while the aspect ratio of bump decreases. The nearest bumps may be touched by decreasing the bump pitch in order to obtain high-density bump. The touching between the nearest bumps occurs during the overplating procedure rather than the reflowing procedure because the mushroom diameter formed by overplating is larger than the reflow-bump diameter. The arrangement as zig-zag rows can be effective for realizing the flip-chip-interconnect bump with both high-density and high-aspect ratio.

  • PDF

Effects of Molding Pressure and Sintering Temperature on Properties of Foamed Glass without Blowing Agent

  • Kim, EunSeok;Kim, Kwangbae;Lee, Hyeryeong;Kim, Ikgyu;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.178-183
    • /
    • 2019
  • A process of fabricating the foamed glass that has closed pores with 8 ~ 580 ㎛ sizes without a blowing agent by sintering 10 ㎛ boron-free glass powder composed of CaO, MgO, SO3, Al2O3-83 wt% SiO2 at a molding pressure of 0 ~ 120 MPa and a sintering temperature of 750 ~ 1000℃ was investigated. To analyze the glass transition temperature of glass powder, thermogravimetric analysis-differential thermal analysis (TGA-DTA) method were used. The microstructure and pore size of foamed glass were examined using the optical microscopy and field emission scanning electron microscopy (FE-SEM). For the thermal diffusivity and color of the fabricated samples, a heat flow meter and ultraviolet-visible-near-infrared (UV-VIS-NIR)-colormetry were used, respectively. In the TGA-DTA result, the glass transition temperature of glass powder was confirmed to be 626℃. In the microstructure result, closed pores of 7 ~ 20 ㎛ were formed at 750 ~ 900℃, and they were not affected by the molding pressure and sintering temperature. However, at 1,000℃, when there was 0 MPa molding pressure, closed pores of 580 ㎛ were confirmed, and the pore size decreased as the molding pressure increased. Moreover, at a molding pressure of 30 MPa or higher, closed pores of approximately 400 ㎛ were formed. The porosity showed an increasing trend of smaller molding pressure and larger sintering temperature, and it was controllable in the range of 5.69 ~ 68.45%. In the thermal diffusivity result, there was no change according to the molding pressure, and, by increasing the sintering temperature, up to 0.115 W/m·K could be obtained. The Lab color index (CIE-Lab) results all showed a similar translucent white color regardless of molding pressure and sintering temperature. Therefore, based on the foamed glass without boron and blowing agent, it was confirmed that white foamed glass, which has closed pores of 8 ~ 580 ㎛ and a thermal diffusivity characteristic of 0.115 W/m·K, can be fabricated by changing the molding pressure and sintering temperature.

Teaching & Learning of Function Based on the Class Structure Model for Integrated Education of Mathematics & Chemistry (수학과 화학 통합교육의 실행을 위한 교수.학습의 실제 - 중학교 1학년 함수단원을 중심으로 -)

  • Park, Jo-Ryoung;ChoiKoh, Sang-Sook
    • Communications of Mathematical Education
    • /
    • v.25 no.3
    • /
    • pp.497-524
    • /
    • 2011
  • This study was to understand students' learning about the function of math combined with molecular motions of science using the block scheduling. It was based on the revised Class Structure Model of Lee et al.(2010) where MBL as a tool was used to increase students' participation and understanding in the integrated concepts. The researcher provided the 6th grade students who lived in Sung Nam-Si, Kyung Gi-Do with 8 unit lessons, consisting of 5 stages of CSM. As a result of the study, the integrated education of Mathematics and Science showed synergic effect in studying both subjects and brought a positive result in gradual mathematization. It may be hard to combine all the contents of mathematics and science together. However, learning the relation between volume and pressure, and between volume and temperature of gas used as an example of function shown in our daily life was appropriate through Fogarty's integrated education model because it supported the objective of both subjects. Also, it was a good idea to develop CSM because it was composed of the contents from both subjects held in the same period of a year. Through the five stages, students were able to establish and generalize the definitions and the concepts of function.

Effect of Fly Ash on the Yield of Chinese Cabbage and Chemical Properties of Soil (석탄회(石炭灰)(Fly ash) 시용(施用)이 배추의 수량(收量) 및 토양특성(土壤特性)에 미치는 영향(影響))

  • Kim, Bok-Jin;Back, Jun-Ho;Kim, Yeung-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.161-167
    • /
    • 1997
  • The effect of Bituminous and Anthracite coal ash(fly ash) on the performance of Chinese cabbage on an acid soil was studied through a pot experiment. The levels of application of the materials tested were five, 10 and 15% of dry soil weight. Regardless of the kind of fly ash, the application of it, tended to increase the yield of Chinese cabbage by 13 to 24% in fresh weight. Difference in application levels did not result in the difference in increasing the yield of Chinese cabbage. The application of fly ash tended to lower the all of the mineral nutrient contents in the Chinese cabbage, excepting boron. Boron content tended to increase along with the application of fly ash. Bituminous ash raised the pH of soil and increased available P, exchangeable Ca and soluble boron in the soil remarkably. Anthracite ash, on the other hand, did not increase the contents of other components in the soil, than soluble born.

  • PDF

High Temperature Desulfurization over ZnO-Fe2O3 Mixed Metal Oxide Sorbent (ZnO-Fe2O3 복합금속 산화물을 이용한 고온에서의 황화수소 제거에 관한 연구)

  • Lee, Jae-Bok;Lee, Young-Soo;Yoo, Kyong-Ok
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.1
    • /
    • pp.62-67
    • /
    • 1994
  • Introduction : Recently, water and environmental pollution becomes serious social problem and high technology makes this pollution accelerate. Hydrogen sulfide, the main subject of our research, is one of the most dangerous air pollutant like SO$_x$ and NO$_x$. The major contaminant in coal gasification is H$_2$S, which is very toxic, hazardous and extremely corrosive. Therefore, control of hydrogen sulfide to a safe level is essential. Although commercial desulfurization process called liquid scrubbing is effective for removal of H$_2$S, it has drawbacks, the loss of sensible heat of the gas and costly wastewater treatment. Many investigations are carried out about high-temperature removal ol H$_2$S in hot coal-derived gas using metal oxide or mixed metal qxide sorbents. It was reported that ZnO was very effective sorbent for H2S removal, but it has big flaw to vaporize elemental zinc above 600\ulcorner \ulcorner As alternative, metal oxides such as CaO, $Fe_2O_3$, TiO$_2$ and CuO were added to ZnO. Especially, different results are reported for $Fe_2O_3$ additive. Tamhankar et al. reported SiO$_2$ with 45 wt% $Fe_2O_3$ sorbent is favorable for removal of H$_2$S and regeneration.

  • PDF

Size-resolved Source Apportionment of Ambient Particles by Positive Matrix Factorization at Gosan, Jeju Island during ACE-Asia (PMF 분석을 이용한 ACE-Asia 측정기간 중 제주 고산지역 입자상 물질의 입경별 발생원 추정)

  • Moon K.J.;Han, J.S.;Kong, B.J.;Jung, I.R.;Cliff Steven S.;Cahill Thomas A.;Perry Kelvin D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.590-603
    • /
    • 2006
  • Size-and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM) sampler from 23 March to 29 April 2001 at Gosan, Jeju Island, Korea, which is one of the super sites of Asia-Pacific Regional Aerosol Characterization Experiment(ACE-Asia). These samples were analyzed using synchrotron X-ray fluorescence for 3-hr average concentrations of 19 elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization(PMF) technique to identify possible sources and estimate their contributions to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Twelve sources were resolved in eight size ranges($0.09{\sim}12{\mu}m$) and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil combustion, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, and volcanic emission. The PMF result of size-resolved source contributions showed that natural sources represented by local soil, sea salt, continental soil, and volcanic emission contributed about 79% to the predicted primary particulate matter(PM) mass in the coarse size range ($1.15{\sim}12{\mu}m$) while anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 58% in the fine size range($0.56{\sim}2.5{\mu}m$). The diesel vehicle source contributed mostly in ultra-fine size range($0.09{\sim}0.56{\mu}m$) and was responsible for about 56% of the primary PM mass.

Effects of Annealing Condition on Properties of ITO Thin Films Deposited on Soda Lime Glass having Barrier Layers (Barrier층을 갖는 Soda lime glass 기판위에 증착된 ITO박막의 Annealing 조건에 따른 영향)

  • Lee, Jung-Min;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Jung-Ho;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.66-66
    • /
    • 2008
  • Most of the properties of ITO films depend on their substrate nature, deposition techniques and ITO film composition. For the display panel application, it is normally deposited on the glass substrate which has high strain point (>575 degree) and must be deposited at a temperature higher than $250^{\circ}C$ and then annealed at a temperature higher than $300^{\circ}C$ in order to high optical transmittance in the visible region, low reactivity and chemical duration. But the high strain point glass (HSPG) used as FPDs is blocking popularization of large sizes FPDs because it is more expensive than a soda lime glass (SLG). If the SLG could be used as substrate for FPDs, then diffusion of Na ion from the substrate occurs into the ITO films during annealing or heat treatment on manufacturing process and it affects the properties. Therefore proper care should be followed to minimize Na ion diffusion. In this study, we investigate the electrical, optical and structural properties of ITO films deposited on the SLG and the Asahi glass(PD200) substrate by rf magnetron sputtering using a ceramic target ($In_2O_3:SnO_2$, 90:10wt.%). These films were annealed in $N_2$ and air atmosphere at $400^{\circ}C$ for 20min, 1hr, and 2hrs. ITO films deposited on the SLG show a high electrical resistivity and structural defect as compared with those deposited on the PD200 due to the Na ion from the SLG on diffuse to the ITO film by annealing. However these properties can be improved by introducing a barrier layer of $SiO_2$ or $Al_2O_3$ between ITO film and the SLG substrate. The characteristics of films were examined by the 4-point probe, FE-SEM, UV-VIS spectrometer, and X-ray diffraction. SIMS analysis confirmed that barrier layer inhibited Na ion diffusion from the SLG.

  • PDF

Electrical Properties of BaTiO3-based 0603/0.1µF/0.3mm Ceramics Decoupling Capacitor for Embedding in the PCB of 10G RF Transceiver Module

  • Park, Hwa-sun;Na, Youngil;Choi, Ho Joon;Suh, Su-jeong;Baek, Dong-Hyun;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1638-1643
    • /
    • 2018
  • Multi-layer ceramic capacitors as decoupling capacitor were fabricated by dielectric composition with a high dielectric constant. The fabricated decoupling capacitors were embedded in the PCB of the 10G RF transceiver module and evaluated for the characteristics of electrical noise by the level of AC input voltage. In order to further improve the electrical properties of the $BaTiO_3$ based composite, glass frit, MgO, $Y_2O_3$, $Mn_3O$, $V_2O_5$, $BaCO_3$, $SiO_2$, and $Al_2O_3$ were used as additives. The electrical properties of the composites were determined by various amounts of additives and optimum sintering temperature. As a result of the optimized composite, it was possible to obtain a density of $5.77g/cm^3$, a dielectric constant of 1994, and an insulation resistance of $2.91{\times}10^{12}{\Omega}$ at an additive content of 5wt% and a sintering temperature of $1250^{\circ}C$. After forming a $2.5{\mu}m$ green sheet using the doctor blade method, a total of 77 layers were laminated and sintered at $1180^{\circ}C$. A decoupling capacitor with a size of $0.6mm(W){\times}0.3mm(L){\times}0.3mm(T)$ (width, length and thickness, respectively) and a capacitance of 100 nF was embedded using a PCB process for the 10G RF Transceiver modules. In the range of AC input voltage 400mmV @ 500kHz to 2200mV @ 900kHz, the embedded 10G RF Transceiver modules evaluated that it has better electrical performance than the non-embedded modules.

Han River Pollution Studies (한강의 오염도)

  • Choe, Sang
    • 한국해양학회지
    • /
    • v.7 no.1
    • /
    • pp.24-45
    • /
    • 1972
  • The Han River is an important water source in Seoul and neighbouring districts, for public and industrial supply, and for agriculture and fishery. Nowadays, more than six million inhabitants are supplied withe water from this river. The total length of the river is 470km, and has 17 10$\^$9/㎥ an average annual flow. The hydrographic characteristics at Seoul are 653㎥/sec in an average flow, 4,608㎥/sec in the maximum average flow, and 201㎥/sec in the minimum average flow. These are influenced in some degree by snowmelt in early spring, and greatly by the flood during summer. For the pollution problems, the periods of low flow are critical ones. As a rule they occur around the months November through June. Nowadays, most of the sewage from towns and industries is discharged untreated. Apart from domestic and industrial sewages, there are some discharges of mineral matter by mines in the upriver region. In general, water quality of the Han River is kept very clean and healthy until Kwangnaru of the upper region of Seoul. A large pollution, however, is received in the downstream by the domestic and industrial sewages of Seoul. It can be seen that dissolved oxygen, COD and BOD$\sub$5/ diminish markedly, and the intensity of almost every water parameter of the river continues to increase. Comparison of the figures for 1971 derived from a sampling point 40km downstream of Kwangnaru leads to the conclusion that hardness, Ca and Mg were no changed; alkalinity, Si and soluble- Fe were slightly increased; CO$\sub$2/, acidity, Cl, NO$\sub$2/-N, Cu, Zn and Al were increased in 2 and 3 times; total residue, total ignitious residue, COD, BOD$\sub$5/, NH$\sub$4/-N, PO$\sub$4/-P, Mn, Pb and total-Fe were increased in 4 to 7 times; and SO$\sub$4/, particulate-Fe and Cd were increased in 10 to 11 times. On the other hand, coliforms were increased in 650 times; fecal coliforms in 365 times; enterococci and total plate counts in 30 times, respectively. In view points of water quality standards, the down Han River water is now leveling out in Cd, coliforms and fecal coliforms for the agricultural use; in dissolved oxygen and some trace elements (Cu, Zn, Pb and Cd) for the fishery use; in ammonia, COD, BOD$\sub$5/, and Cd for the drinking use.

  • PDF

Removal of Red Tide Organisms -2. Flocculation of Red Tide Organisms by Using Loess- (적조생물의 구제 -2. 황토에 의한 적조생물의 응집제거-)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.455-462
    • /
    • 2000
  • The objective of this study was to examine the physicochemical characteristics of coagulation reaction between loess and red tide organisms (RTO) and its feasibility, in developing a technology for the removal of RTO bloom in coastal sea. The physicochemical characteristics of loess were examined for a particle size distribution, surface characteristics by scanning electron microscope, zeta potential, and alkalinity and pH variations in sea water. Two kinds of RTO that were used in this study, Cylindrothen closterium and Skeietonema costatum, were sampled in Masan bay and were cultured in laboratory. Coagulation experiments were conducted using various concentrations of loess, RTO, and a jar tester. The supernatant and RTO culture solution were analyzed for pH, alkalinity, RTO cell number. A negative zeta potential of loess increased with increasing pH at $10^(-3)M$ NaCl solution and had -71.3 mV at pH 9.36. Loess had a positive zeta potential of +1,8 mV at pH 1.98, which resulted in a characteristic of material having an amphoteric surface charge. In NaCl and $CaCl_2$, solutions, loess had a decreasing negative zeta potential with increasing $Na^+\;and\;Ca^(+2)$ ion concentration and then didn't result in a charge reversal due to not occurring specific adsorption for $Na^+$ ion while resulted in a charge reversal due to occurring specific adsorption for $Ca^(+2)$ ion. In sea water, loess and RTO showed the similar zeta potential values of -112,1 and -9.2 mV, respectively and sea sand powder showed the highest zeta potential value of -25.7 mV in the clays. EDLs (electrical double-layers) of loess and RTO were extremely compressed due to high concentration of salts included in sea water, As a result, there didn't almost exist EDL repulsive force between loess and RTO approaching each other and then LVDW (London-yan der Waals) attractive force was always larger than EDL repulsive force to easily form a floe. Removal rates of RTO exponentially increased with increasing a loess concentration. The removal rates steeply increased until $800 mg/l$ of loess, and reached $100{\%}$ at 6,400 mg/l of loess. Removal rates of RTO exponentially increased with increasing a G-value. This indicated that mixing (i.e., collision among particles) was very important for a coagulation reaction. Loess showed the highest RTO removal rates in the clays.

  • PDF