• Title/Summary/Keyword: Al-1%Si

Search Result 2,320, Processing Time 0.034 seconds

Sensitivity and Self-purification Function of Forest Ecosystem to Acid Precipitation (II) - Ion Balance in Vegetation and Soil Leachate - (산성우(酸性雨)에 대한 산림생태계(山林生態系)의 민감도(敏感度) 및 자정기능(自淨機能)(II) - 식생층(植生層)과 토양층(土壤層) 용탈(溶脫)이온 분석(分析)을 중심으로 -)

  • Chang, Kwan Soon;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.103-113
    • /
    • 1995
  • To estimate buffer capacity and sensitivity of forest ecosystem to acid rain in Taejon, ionic components of throughfall, stemflow, soil leachate, and open rain in Pinus rigida and Quercus variabilis forest were analysed. The spatial sensitivity based on parent rock and forest type was given by IDRISI of GIS which created imagery conversion from soil and vegetation map. Parent rocks and soils were classified into acidic, sedimentary, metamorphic rock and then subdivided based on $SiO_2$ content. Average pH of vegetation leachate was higher in throughfall but lower in stemflow than open rain and higher in Quercus variabilis forest than in Pinus rigida forest. The flow of $SO{_4}^{2-}$, $NO_3{^-}$ and $Cl^-$ through vegetation leaching(throughfall plus stemflow) into soil were 7.2, 4.3, and 2.5 times, respectively, higher in Pinus rigida forest and 4.4, 2, and 2.5 times, respectively, higher in Quercus variabilis forest than in open field. But the concentration of exchangeable cations was 4.1 times higher in Pinus rigida forest and 4.6 times higher in Quercus variabilis forest than in open field. Average pH of soil leachate was lower than that of throughfall, but higher than that of stemflow. The concentration of exchangeable canons and $Al^{3+}$ in soil leachate were more in Pinus rigida forest than in Quercus variabilis forest and increase signficantly with the increase of acidic deposits. Pinus forest had more deposition and canopy interception of acidic pollutants and more nutrient loss than Quercus forest, and Quercus forest had more cation exchange and proton consumption and than consequently had less nutrient loss and better buffer capacity than Pinus forest. The 69% of forest soils was distributed on acidic rock, 25% of it on metamorphic rock, and 6% of it on intermediate and basic rock. Acidic rock residuals which had low very canon exchange capacity and high sensitivity to acid rain occupied a half of total forest land in Taejon area. Therefore forests in Taejon showed high vulnerability to acid rain and will receive much more stress with the increase of acid rain precursors.

  • PDF

Mineralogical Studies of the Tourmaline for Medicinal Applications by Production Localities (본초 광물로서의 활용을 위한 산지별 전기석의 광물학적 연구)

  • Jie, Yan;Kim, Seon-ok;Park, Hee Yul;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.345-358
    • /
    • 2018
  • In this study, we have performed electron probe micro analyzer (EPMA), X-ray differaction (XRD), inductively coupled plasma spectroscopy (ICP), Fourier transform Raman spectroscopy (FT-Raman), far-infrared (FIR), nuclear magnetic resonance (NMR), and pH-DO Analyses for characterizing medicinal mineralogy aspect of the black tourmaline (Shantung, china), black and pink tourmaline (Minas Geraris, Brazil), black touemaline (Daeyu mine, Korea). In addition, heating effects of the tourmaline sauna as well as the effects of tourmaline powder-added soap on skin troubles have been investigated. It has been revealed that chemical composition of the tourmaline is either high in Fe-, Al-, B-rich types. Ratio of the K-Ca, Na-K, and Fe-B reflects the component change property of solid solution. $CaO/CaO+Na_2O$ and MgO/FeO+MgO ratio show high positive correlation. When tourmaline reacts with distilled water, extended reaction time DO values approximately decrease and it stabilizes at DO = 10. Otherwise, pH values increase until 6 hours and it stabilizes at pH = 8 after 24 hours. Distilled water changes to alkaline when it reacts with tourmaline powder and particles. Tourmaline showed lower absorption spectrum strength and transmittance at short wave, where absorption spectrum wavelength and strength were determined by the content of the composition elements and characteristics of crystallography. Increase of the Fe content has been confirmed to be the cause for the reduction of irradiation. For the chemical composition and spectral property of the tourmaline particle samples, it has been found that Si and Fe contents show positive correlation with Far-Infrared irradiation, while Al and Mg contents show negative correlation. For tourmaline powder, it has been confirmed that $^{17}O-NMR$ FWHM (full width at half maximum) decreases when reacts with distilled water. Tourmaline sauna (approximately $100^{\circ}C$) was found to increase $0.5-1.5^{\circ}C$ of body temperature, average of 12 heartbeat, and 10mg Hg of blood pressure. Tourmaline soap had very good aesthetic effect to skin and was confirmed to have above the average improvements to skin troubles (e.g., allergy or atopy).

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea -I. Rock-forming Minerals and Mineralogical Characteristics of the Parent Rocks (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토(土壤粘土) 광물(鑛物)의 특성(特性)과 생성학적(生成學的) -I. 조암광물(造岩鑛物)과 광물학적(鑛物學的) 특성(特性))

  • Um, Myung-Ho;Lim, Hyung-Sik;Kim, Young-Ho;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 1991
  • A study was carried out to investigate the composition of rock-forming minerals and mineralogical characteristics of the five major parent rocks in Korea. The identification was done through the analyses of chemical. X-ray diffraction, thermal(DTA, TG), infrared spectroscopic, and microscopic methods. Among these methods, X-ray diffraction was considered to be the most rapid and effective way to identify minerals in the parent rocks. The main rock-forming minerals of the parent rocks were feldspars, quartz, and micas in granite and granite-gneiss, calcite and dolomite in limestone, quartz and calcite in shale, plagioclase and augite in basalt. A small amount of sesquioxides was identified as a accessory mineral by means of DTA from the parent rocks of Weoljeong series(granite) and Cheongsan series(granite-gneiss). The abrasion pH affecting the soil formation ranged from 7.5 to 8.4 in the parent rocks containing ferromagnesian minerals and carbonates. In the granite and granite-gneiss of which the main rock-forming minerals were feldspars and quartz with low content of biotite, the abrasion pH ranged from 6.2 to 6.4. In chemical composition of the parent rocks, Si, AI, and K oxides tented to increase with higher contents of quartz, feldspars, and muscovite, while Fe and Mg oxides with higher content of biotite, chlorite, amphiboles, and augite. Higher ignition loss in limestone and shale resulted in the release of $CO_2$ from calcite and/or dolomite.

  • PDF

The Geochemical and Zircon Trace Element Characteristics of A-type Granitoids in Boziguoer, Baicheng County, Xinjiang (중국 신장 위그루자치구 바이청현 보즈구얼의 A형화강암류의 지화학 및 지르콘 미량원소특징에 대한 연구)

  • Yin, Jingwu;Liu, Chunhua;Park, Jung Hyun;Shao, Xingkun;Yang, Haitao;Xu, Haiming;Wang, Jun
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.179-198
    • /
    • 2013
  • The Boziguoer A-type granitoids in Baicheng County, Xinjiang, belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks. The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite, an aegirine or arfvedsonite alkali feldspar granite, and a biotite alkali feldspar syenite. The major rock-forming minerals are albite, K-feldspar, quartz, arfvedsonite, aegirine, and siderophyllite. The accessory minerals are mainly zircon, pyrochlore, thorite, fluorite, monazite, bastnaesite, xenotime, and astrophyllite. The chemical composition of the alkaline granitoids show that $SiO_2$ varies from 64.55% to 72.29% with a mean value of 67.32%, $Na_2O+K_2O$ is high (9.85~11.87%) with a mean of 11.14%, $K_2O$ is 2.39%~5.47% (mean = 4.73%), the $K_2O/Na_2O$ ratios are 0.31~0.96, $Al_2O_3$ ranges from 12.58% to 15.44%, and total $FeO^T$ is between 2.35% and 5.65%. CaO, MgO, MnO, and $TiO_2$ are low. The REE content is high and the total ${\sum}REE$ is $(263{\sim}1219){\times}10^{-6}$ (mean = $776{\times}10^{-6}$), showing LREE enrichment HREE depletion with strong negative Eu anomalies. In addition, the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type. The Zr content is $(113{\sim}1246){\times}10^{-6}$ (mean = $594{\times}10^{-6}$), Zr+Nb+Ce+Y is between $(478{\sim}2203){\times}10^{-6}$ with a mean of $1362{\times}10^{-6}$. Furthermore, the alkaline granitoids have high HFSE (Ga, Nb, Ta, Zr, and Hf) content and low LILE (Ba, K, and Sr) content. The Nb/Ta ratio varies from 7.23 to 32.59 (mean = 16.59) and the Zr/Hf ratio is 16.69~58.04 (mean = 36.80). The zircons are depleted in LREE and enriched in HREE. The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly. The Boziguoer A-type granitoids share similar features with A1-type granites. The average temperature of the granitic magma was estimated at $832{\sim}839^{\circ}C$. The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature, anhydrous, and low oxygen fugacity conditions.

Anti-corrosion properties for cross section of Mg films on galvalume steel coated by PVD process (PVD법에 의해 Mg 코팅된 갈바륨 도금강판의 단면부 내식특성)

  • Park, Jae-Hyeok;Kim, Sun-Ho;Park, Gi-Dong;Jeong, Jae-In;Yang, Ji-Hun;Lee, Gyeong-Hwang;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.65-65
    • /
    • 2018
  • 갈바륨 도금강판은 알루미늄의 우수한 차폐 특성과 내열성, 열 반사성을 가지며 아연의 희생방식 특성을 겸비하여 동일 부착량의 용융 아연도금 및 알루미늄 도금강판에 비해 우수한 내식성을 나타낸다고 알려져 있다. 또한 이것은 표면이 미려하고 경제성이 높아 건자재 용도로 현재까지도 세계적으로 널리 이용되고 있다. 여기서 지칭하는 바륨 도금강판(galvalume steel)은 아연과 알루미늄 도금강판의 장점을 접목하기 위해 55 Al-43.4 Zn-1.6 Si (wt.%)로 구성되어 개발된 3원계 성분의 합금도금강판이다. 한편, 최근에는 강재의 내식성을 향상시키기 위한 다양한 연구 결과에 의해 Zn-Al-Mg의 3원계 합금도금강판도 개발되어 사용되고 있다. 이것은 기존의 아연도금 강판 보다 10배 정도의 우수한 내식성을 나타내는 것으로 보고되고 있다. 특히, 이것은 도금된 평판부의 내식성은 물론 절단된 도금 단면부의 내식성도 매우 우수하다고 알려져 있다. 그러나 상기한 갈바륨 도금강판의 경우에는 도금된 표면부에 비해 단면부의 내식성이 상대적으로 취약한 것으로 알려져 있다. 따라서 본 연구에서는 갈바륨 도금강판의 내식성을 종합적으로 향상시키기 위하여 이 갈바륨 도금강판 상에 PVD 스퍼터링법에 의해 Mg 코팅막의 제작을 시도하였다. 여기서 Mg 코팅막은 후처리 된 갈바륨 도금강판 상에 Ar 공정압력 2 및 20 mTorr 조건 중 1.5 및 $3{\mu}m$ 두께로 제작하였다. 또한 제작한 코팅막에 대해서는 모폴로지 관찰(SEM) 및 결정구조 분석(XRD)을 하였고, 분극측정, 염수분무 시험(SST) 및 복합부식 시험(CCT)에 의해 표면 및 단면부의 내식성평가를 수행하였다. 또한 여기서는 염수분무 및 복합부식 시험 후의 시험편도 채취 하여 표면 및 단면부위에 대한 원소조성 분석(EPMA)과 결정구조 분석(XRD)을 실시하였다. 이상의 실험 결과에 의하면, 본 실험에서 제작한 Mg 코팅막은 그 두께가 두꺼울수록 표면 Mg 결정립의 크기가 증가하였고, 그 부식속도가 증가하는 경향을 나타내었다. 또한 여기서는 공정압력이 높은 조건에서 제작한 막일수록 Mg(002)면 피크 강도가 감소하고 Mg(101)면 피크의 배향성이 증가하였다. 그때 그 막의 내식성은 향상되는 경향을 나타내었다. 그리고 종합적으로 염수분무 및 복합부식 시험 결과에 의하면 Mg이 코팅된 갈바륨 도금강판은 기존 갈바륨 도금강판 보다 내식성이 현저히 향상되었다. 특히, 단면부 내식성의 경우에는 기존 대비 5배 이상 향상되는 경향을 나타내었다. 여기서 단면부 내식특성 분석을 위한 EPMA 원소조성 분석 결과에 의거하면, 부식 초기에는 마그네슘의 부식생성물에 의해 단면부가 치밀하게 보호되고 있음을 확인할 수 있었다. 그 이후에는 부식이 지속적으로 진행됨에 따라 갈바륨 도금층에서 용출된 알루미늄 및 아연 성분이 마그네슘과 함께 치밀한 부식생성물을 형성하여 단면부를 차폐함에 따라 단면부의 내식성이 크게 향상된 것으로 생각된다. 이러한 부식생성물의 결정구조 분석 결과에 따르면, 염수분무와 복합부식 시험에서는 공통적으로 MgO, $Mg(OH)_2$ 이외에도 Simonkolleite상 등이 형성되었다. 또한 건-습 반복 부식시험인 복합부식시험 후에는 $Mg_5(CO_3)_4(OH)_24H_2O$(Hydromagnesite)상 등이 형성됨을 확인할 수 있었다. 즉, 본 실험에서 후처리된 갈바륨 도금강판 상에 제작한 마그네슘 코팅막의 경우에는 상기와 같은 다양한 부식반응에 의해 표면 및 단면부에 형성된 Mg계 부식생성물과 $Zn_5(OH)_8Cl_2H_2O$(Simonkolleite)상에 의해서 표면은 물론 단면부 내식성이 크게 향상된 것으로 사료된다.

  • PDF

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

Geochemical Origin, Behavior and Enrichment of Environmental Toxic Elements in Coaly Metapelite from the Deokpyeong Area, Korea (덕평지역의 탄질 변성니질암에 관한 환경적 독성원소의 지구화학적 기원, 거동 및 부화)

  • Lee, Hyun Koo;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.553-566
    • /
    • 1997
  • Origin, behavior and enrichment of environmental toxic elements from the Deokpyeong area were investigated on the basis of major, trace and rare earth element geochemistry. Coaly metapelites of the Deokpyeong area are subdivided into grey phyllite, dark grey phyllite, coaly slate and black slate, which are interbedded along the Ogcheon Supergroup. The coaly slate had been mined for coal, but mining is closed. The coaly and black slates are lower contents of $SiO_2$ and $Al_2O_3$, and higher contents of LOI, CaO, $Na_2O$ and BaO as compared with the phyllitic rocks. Rare earth elements are highly enriched in the coaly and black slate. Average compositions (ppm) of minor and/or environmental toxic elements in the coaly and black slate are revealed as As=127, Ba=30,163, Cd=18, Cr=740, Cu=84, Mo=378, Pb=43, Sb=12, Se=44, U=144, V=8,147 and Zn=292, which are extremely high concentrations than those in the NASC compositions. Major elements (average enrichment index; 5.34) in the coaly metapelites are mostly depleted, excepting $P_2O_5$ and BaO, normalized by NASC. Rare earth elements (average enrichment index; 1.48) are enriched in the coaly slate. On the basis of NASC, minor and/or environmental toxic elements in the coaly metapelites were strongly enriched of all the elements with the exception of Co, Cs, Ni and Sr. Average enrichment index of trace elements in coaly metapelite is 31.51 (coaly slate; 51.94 and black slate; 15.46). Especially, enrichment index of potentially toxic elements (As, Ba, Cr, Cu, Mo, Ni, Sb, Se, U, V and Zn) of the rock is 46.10 (grey phyllite; 7.15, dark grey phyllite; 4.77, coaly slate; 88.96 and black slate; 22.11). These coal formations were deposited in basin of boundary between terrestrial and marine environments deduced to carbon, sulfur (C/S=2.2 to 275.7), trace and rare earth elements characteristics. Irregular behavior and dispersion between major, minor and rare earth elements of those metapelites indicates a variable source materials, incomplete mixing of differential source and/or reequilibrium of diagenesis and metamorphism.

  • PDF

The Recycling of Inorganic Industrial Waste in Cement Industry (시멘트산업에서 무기질 산업 폐·부산물의 재활용)

  • Kang, S.K.;Nam, K.U.;Seo, H.N.;Kim, N.J.;Min, K.S.;Chung, H.S.;Oh, H.K.
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • In this study, generation process and properties of inorganic industrial waste which can be used in cement industry were investigated. The scheme of recycling to use the selected waste as raw materials, mineralizer and flux, admixture and raw materials for special cement was decided and then various experiments were carried out. The experimental results were as follows ; In the use of industrial waste as raw materials, ferrous materials could be substituted by Cu-slag, Zn-slag, electric arc furnace or convertor furnace slag etc., and a siliceous material could be substituted by sand from cast-iron industry. By-products from sugar or fertilizer industry, which has $CaF_2$ as the main component, and jarosite from Zn refinery enabled clinker phases to be formed at lower temperature by $100{\sim}150^{\circ}C$. Adding Cu slag and STS sludge in proper proportion to cement improved properties of cement. Fly ash and limestone powder as admixture had the same effect on cement. As a raw material for special cement, aluminium waste sludge could be used in making ultra early strength cement, which had the compressive strength of $300kg/cm^2$ within 2hours. And two different ashes from municipal incinerator could be raw materials of the cement which was mainly composed of $C_3S$ and $C_{11}A_7{\cdot}CaCl_2$ as clinker phases.

  • PDF

Deposition Properties of NiCr Thin Films Prepared by Thermal Evaporation (Thermal Evaporation법으로 제조한 NiCr 박막의 증착 특성)

  • Kun, Yong;Park, Yong-Ju;Choi, Seoung-Pyung;Jung, Jin;Choi, Gwang-Pyo;Ryu, Hyun-Wook;Park, Jin-Seong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.450-455
    • /
    • 2004
  • NiCr thin films were fabricated by thermal evaporation method using NiCr alloy as evaporating source. NiCr thin films were annealed at various temperatures in air atmosphere in order to investigate effects of annealing conditions on phase change, composition, and microstructures of NiCr films. Typical multilayer was formed after annealing in air atmosphere. This results from the diffusion and oxidation of Cr toward surface during annealing. In the case of annealing at 700$^{\circ}C$, large columnar grains of NiO were formed on Cr-oxide layer through the diffusion and oxidation of Ni over Cr-oxide layer. Especially, NiO layer was formed additionally on surface, sustaining the underlayer structure with the formation of porous Ni layer.

A Comparative Study on PM10 Source Contributions in a Seoul Metropolitan Subway Station Before/After Installing Platform Screen Doors (서울시 지하철 승강장의 스크린도어 설치 전·후 PM10 오염원의 기여도 비교 연구)

  • Lee, Tae-Jung;Jeon, Jae-Sik;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.543-553
    • /
    • 2010
  • Almost five million citizens a day are using subways as a means of traffic communication in the Seoul metropolitan. As the subway system is typically a closed environment, indoor air pollution problems frequently occurs and passengers complain of mal-health impact. Especially $PM_{10}$ is well known as one of the major pollutants in subway indoor environments. The purpose of this study was to compare the indoor air quality in terms of $PM_{10}$ and to quantitatively compare its source contributions in a Seoul subway platform before and after installing platform screen doors (PSD). $PM_{10}$ samples were collected on the J station platform of Subway Line 7 in Seoul metropolitan area from Jun. 12, 2008 to Jan. 12, 2009. The samples collected on membrane filters using $PM_{10}$ mini-volume portable samplers were then analyzed for trace metals and soluble ions. A total of 18 chemical species (Ba, Mn, Cr, Cd, Si, Fe, Ni, Al, Cu, Pb, Ti, $Na^+$, $NH_4^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, and ${SO_4}^{2-}$) were analyzed by using an ICP-AES and an IC after performing proper pre-treatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the source of particulate matters. $PM_{10}$ for the station was characterized by three sources such as ferrous related source, soil and road dust related source, and fine secondary aerosol source. After installing PSD, the average $PM_{10}$ concentration was decreased by 20.5% during the study periods. Especially the contribution of the ferrous related source emitted during train service in a tunnel route was decreased from 59.1% to 43.8% since both platform and tunnel areas were completely blocked by screen doors. However, the contribution of the fine secondary aerosol source emitted from various outside combustion activities was increased from 14.8% to 29.9% presumably due to ill-managed ventilation system and confined platform space.