• Title/Summary/Keyword: Al single crystal

Search Result 300, Processing Time 0.026 seconds

Fabrication of YAG : Er3+ powders for the single crystal growth according to the synthetic temperature and flux concentration (다양한 온도조건과 flux 첨가량에 따른 단결정 성장용 YAG : Er3+ 분말 제조)

  • Park, Cheol Woo;Kang, Suk Hyun;Park, Jae Hwa;Kim, Hyun Mi;Choi, Jae Sang;Kang, Hyo Sang;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.166-171
    • /
    • 2015
  • In this study, using solid-state and flux, $Y_3Al_5O_{12}:Er^{3+}\;(YAG:Er^{3+})$ powders were successfully synthesized at low temperatures. To analyze the crystallinity of powders according to the synthesis or non-synthesis of powders and powder calcination temperatures, X-ray diffraction (XRD) was measured. In the case of pure YAG, when YAG was analyzed using the general solid-phase method, it was calcined for 12 hours at $1400^{\circ}C$ and pure YAG phase could be obtained. But when $BaF_2$ was added to YAG, YAG was synthesized at lower temperature (1000^{\circ}C$). It was thus found that the synthesis temperature could be lowered by about $400^{\circ}C$. Also, when BaF2 with an optimal concentration was added to $YAG:Er^{3+}$, the particle shape and size according to synthesis temperatures were surveyed, and corresponding luminous intensity was discussed.

Preparation of Al-doped NiO via Solvothermal Synthesis and its Crystal Structural and Electrical Properties (용매열 합성법을 통하여 알루미늄을 도핑한 니켈옥사이드의 제조와 그 결정구조적, 전기적 특성)

  • Hong, Sun-Ki;Ji, Mi-Jung;Lee, Min-Jin;Jung, Sung-Hun;Seol, Kwang-Hee;Choi, Byung-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.631-635
    • /
    • 2012
  • Nickel oxide was doped with a wide range of concentrations (mol%) of Aluminum (Al) by solvothermal synthesis; single-phased nano powder of nickel oxide was generated after calcination at$900^{\circ}C$. When the concentration of Al dopant was increased, the reduced intensity was confirmed through XRD analysis. Lattice parameters of the synthesized NiO powder were decreased after treatment of the dopant; parameters were increased when the concentration of Al was over the doping limit (5 mol% Al). The binding energy of $Ni^{2+}$ was chemically shifted to $Ni^{3+}$ by doping $Al^{3+}$ ion, as confirmed by the XPS analysis. The tilted structure of the synthesized NiO with 5 mol% Al dopant and the polycrystalline structure of the $Ni_{0.75}Al_{0.25}O$ were observed by HR-TEM analysis. The electrical conductivity of the newly synthesized NiO was highly improved by Al doping in the conductivity test. The electrical conductivity values of the commercial NiO and the synthesized NiO with 5 mol% Al dopant ($Ni_{0.95}Al_{0.05}O$) were 1,400 s/cm and 2,230 s/cm at $750^{\circ}C$, respectively. However, the electrical conductivity of the synthesized NiO with 10 mol% Al dopant ($Ni_{0.9}Al_{0.1}O$) decreased due to the scattering of free-electrons caused by the large number of impurity atoms; the electrical conductivity of $Ni_{0.9}Al_{0.1}O$ was 545 s/cm at $750^{\circ}C$.

Synthesis and Characterization of Methyltriphenylsilane for SiOC(-H) Thin Film (SiOC(-H) 박막 제조용 Methyltriphenylsilane 전구체 합성 및 특성분석)

  • Han, Doug-Young;Park Klepeis, Jae-Hyun;Lee, Yoon-Joo;Lee, Jung-Hyun;Kim, Soo-Ryong;Kim, Young-Hee
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.600-605
    • /
    • 2010
  • In order to meet the requirements of faster speed and higher packing density for devices in the field of semiconductor manufacturing, the development of Cu/Low k device material is explored for use in multi-layer interconnection. SiOC(-H) thin films containing alkylgroup are considered the most promising among all the other low k candidate materials for Cu interconnection, which materials are intended to replace conventional Al wiring. Their promising character is due to their thermal and mechanical properties, which are superior to those of organic materials such as porous $SiO_2$, SiOF, polyimides, and poly (arylene ether). SiOC(-H) thin films containing alkylgroup are generally prepared by PECVD method using trimethoxysilane as precursor. Nano voids in the film originating from the sterichindrance of alkylgroup lower the dielectric constant of the film. In this study, methyltriphenylsilane containing bulky substitute was prepared and characterized by using NMR, single-crystal X-ray, GC-MS, GPC, FT-IR and TGA analyses. Solid-state NMR is utilized to investigate the insoluble samples and the chemical shift of $^{29}Si$. X-ray single crystal results confirm that methyltriphenylsilane is composed of one Si molecule, three phenyl rings and one methyl molecule. When methyltriphenylsilane decomposes, it produces radicals such as phenyl, diphenyl, phenylsilane, diphenylsilane, triphenylsilane, etc. From the analytical data, methyltriphenylsilane was found to be very efficient as a CVD or PECVD precursor.

Research for Deposition of $CeO_2$ Buffer Layer on Coated Conductor by Electron Beam Evaporation (전자빔 증발법에 의한 박막형 고온초전도체의 $CeO_2$ 버퍼층 증착 연구)

  • Lee, J.B.;Park, S.K.;Kim, H.J.;Moon, S.H.;Lee, H.G.;Hong, G.W.
    • Progress in Superconductivity
    • /
    • v.11 no.2
    • /
    • pp.123-127
    • /
    • 2010
  • The properties of buffer layer for thermal and chemical stability in coated conductor is a very important issue. $CeO_2$ has desirable thermal and chemical stability as well as good lattice match. In this study, $CeO_2$ was deposited by electron beam deposition. The MgO(001) single crystal and LMO buffered IBAD substrate(LMO/IBAD-MgO/$Y_2O_3/Al_2O_3$/Hastelloy) were used as substrates, which have $\Delta\phi$ values of ${\sim}8.9^{\circ}$. The epitaxial $CeO_2$ films was deposited with high deposition rate of $12{\sim}16\;{\AA}/sec$. During deposition, the change of oxygen partial pressure(${\rho}O_2$) does not cause change in c-axis texture. In case of $CeO_2$ on MgO single crystal, the substrate temperature was optimized at $750^{\circ}C$ with superior $\Delta\phi$ and $\Delta\omega$ value. Otherwise, In case of LMO buffered IBAD substrate, It was optimized at $650^{\circ}C$ with increasing its deposition thickness of $CeO_2$, which was finally obtained with best $\Delta\phi$ value of $5.5^{\circ}$, $\Delta\omega$ value of $2^{\circ}$ and Ra value of 2.2 nm.

Crystal Structure of Dehydrated Cesium and Silver Exchanged Zeolite A,$ Cs_{7.3}Ag_{4.7}$-A

  • Yang Kim;Karl Seff
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.117-121
    • /
    • 1984
  • The structure of $CS_{7.3}Ag_{4.7}Si_{12}Al_{12}O_{48}$, vacuum dehydrated zeolite A with all Na+ ions replaced by $Cs^+$ and $Ag^+$ as indicated, has been determined by single-crystal x-ray diffraction techniques in the cubic space group, Pm3m (a = 12.282 (1) ${\AA}$). The structure was refined to the final error indices $R_1$$R_2$ (weighted) = 0.099 using 347 independent reflections for whind intlch $I_0\;>\;3{\sigma}(I_0)$. Although deydration occurred at $360^{\circ}C$, no silver atoms or clusters have been observed. The 8-ring sites are occupied only by $Cs^+$ ion, and the 4-ring sites only by a single $Ag^+$ ion. The 6-ring sites contain $Ag^+$ and $Cs^+$ ions with $Ag^+$ nearly in 6-ring planes and $Cs^+$ well off them, one on the sodalite unit side. With regard to the 6-rings, the structure can be represented as a superposition of two types of unit cells: about 70 % have $4Ag^+$ and $4Cs^+$ ions, and the remaining 30 % have $3Ag^+$ and $5Cs^+$. In all unit cells, $3Cs^+$ ions lie at the centers of the 8-rings at sites of D4h symmetry; these ions are approximately 0.3 ${\AA}$ further from their nearest framework-oxygen neighbors than the sum of the appropriate ionic radii would indicate. To minimize electrostatic repulsions, the $Cs^+$ ions at Cs(1) are not likely to occupy adjacent 6-rings in the large cavity; they are likely to be tetrahedrally arranged when there are 4.

Assaying of SNM using Simultaneous Detection of Fission Neutrons and Gammas by Employing a Novel Phoswich Detector

  • Sonu;Mohit Tyagi;A. Kelkar;A. Sahu;M. Sonawane;P.S. Sarkar;A. Pandey;D.B. Sathe;G.D. Patra;T. Vincent;S.G. Singh;R.B. Bhatt
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2662-2669
    • /
    • 2023
  • For the precise measurements of special nuclear materials (SNM) including Pu and Am isotopes, we have used phoswich detector combination of two single crystal scintillators of Gd3Ga3Al2O12:Ce and CsI:Tl. High detection efficiency and sensitivity along with high figure of merit for the discrimination of these phoswich detectors ensures the detection and discrimination of thermal neutrons and gammas from spontaneous fission of Pu and other isotopes in presence of high gamma background. Using this detector, the low energy gammas, which is stopped completely in 1mm thick disc of GGAG, can be also discriminated from high energies gamma and shows linearity in wide range of sample quantities. By changing only the appropriate shielding, the similar setup was used for thermal neutron detection and shows a very good linearity over wide range. The quantity of a test sample was also calculated accurately by using the measured calibrated plot.

Fabrication of the Ni nanorod by AAO template (집합조직과 AAO Template특성)

  • Park, B.H.;Kim, I.;Lee, M.G.;Akramov, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.251-253
    • /
    • 2006
  • 본 연구에서는 Anodic Aluminum Oxide(AAO) 템플레이트 제조 시 알루미늄의 결정방위가 세공 형성에 미치는 영향을 연구하였다. 시료는 직경 20mm 두께 2mm의 세가지 단결정 시편을 사용 하였으며 이는 XRD 장비로 $2{\theta}$ 측정결과를 통해 확인 하였다. 양극 산화전 평활한 면을 얻기 위해 다이아몬드분말로 미세연마하였으며 양극산화는 세가지 시편 모두 동일한 조건에서 2단계공정까지 진행하여 반복 실험 하였다. 결과는 전계방출주사전자현미경(FE-SEM)으로 표면의 세공형태를 관찰 하였다.

  • PDF

Influences of Electrochemical Vapor Deposit Conditions Growth Rate and Characteristics of YSZ Thin Films (I) (YSZ 박막의 성장속도와 특성에 미치는 전기화학증착 조건의 영향(I))

  • 박동원;전치훈;강대갑;최병진;김대룡
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.25-34
    • /
    • 1996
  • Yttria stabilized zirconia (YSZ) thin films were prepared by the electrochemical vapor deposition (EVD) method on the porous Al2O3 substrates which were fabricated by different substrate thickness and porosity. Film growth rates decreased with increase on the substrate thickness and porosity and obeyed a parabolic rate law. Activa-tion energy calculated from the parabolic rate onstants was 69.9 kcal/mol. With increase on the deposition time, monoclinic phase was appeared and then disappeared. YSZ penetrated deeply into substrates when the EVD temperature decreased. Electrical conductivity of the films was 0.09 S/cm at 100$0^{\circ}C$ similar to the value of YSZ single crystal.

  • PDF

Optimization of process variables in batch-type MOD process (일괄처리방식을 이용한 MOD 공정의 변수 최적화)

  • Chung, Kook-Chae;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Young-Kuk;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.23-25
    • /
    • 2006
  • Optimization of process variables, including oxygen and water partial pressure and also an nesting temperature, was performed in batch-type process to fabricate YBCO films on LaAlO3 single crystal. In this work, YBCO oxide powder was used as a starting precursor for metal-organic deposition(MOD)method. The precursor films were fabricated in batch furnace and they were converted to the epitaxial YBCO films at the same furnace with varying the process variables. The oxygen partial pressure was varied from 100ppm to 2000ppm and the water partial pressure from 1.2% to 12.2%. The window for optimal P(O2) was narrow about 700ppm for batch-type process. YBCO films in bathc-thype MOD process were optimized at 740-770oC and P(H2O) of 2.3%-7.3%.