• Title/Summary/Keyword: Al matrix composites

Search Result 319, Processing Time 0.025 seconds

Behavior of Diffusion Layer Formation for TiNi/6061Al Smart Composites by Vacuum hot Press (진공 Hot Press법에 의한 TiNi/6061Al 지적 복합재료의 확산층 형성거동)

  • Park, Kwang-Hoon;Park, Sung-Ki;Shin, Soon-Gi;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.955-961
    • /
    • 2002
  • 2.7vol%TiNi/6061 Al composites with TiNi shape memory alloy as reinforcement were fabricated by vacuum hot press. It was investigated by OM, SEM, EPMA and XRD analysis for the behavior of diffusion layer formation on various heat treatment condition. Thickness of diffusion layer was increased proportionally according to heat treatment time. The layer was formed by the mutual diffusion of TiNi and Al. The diffusion rate from TiNi fiber to Al matrix was faster than that of reverse diffusion path. The more diffused layer was formed in Al matrix. The diffusion at interface layer was consisted of $A1_3$Ti, $Al_3$Ni analyzed by EPMA, XRD results.

Microstructures and Densification Behaviors of $Al_2O_3-ZrO_2(ZTA)$ Composites Fabricated by a Surface-induced Coating (표면-유기 코팅에 의해 합성한 $Al_2O_3-ZrO_2(ZTA)$ 복합체의 미세구조와 소결거동)

  • 장현명;문종하;김광수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Al2O3-ZrO2(ZTA) composites were fabricated by a surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3. The fabricated composites were characterized by a uniform spatial distribution of the dispersed ZrO2 phase and by the absence of large ZrO2 grains throughout the Al2O3 matrix. The fracture toughness (KIC) and the bending strength of ZTA composites sintered at 1$600^{\circ}C$, respectively, were 5.6 MPa.m1/2 (for 20 wt% ZrO2) and 600 MPa (for 15wt% ZrO2). The fraction of tetragonal ZrO2 phase decreases as the total content of ZrO2, suggesting that both the stress-induced tlongrightarrowm transformation and the microcrack nucleation contribute to the toughening of the ZTA composites fabricated by the surface-induced coating.

  • PDF

Microstructure and Mechanical Properties of Squeeze Cast AZ91 Mg/Al Borate Whisker Composites (용탕단조법으로 제조된 AZ91 Mg/Al Borate 휘스커 복합재료의 미세조직 및 기계적 특성)

  • Kim, Kwang-Chun;Cho, Young-Su;Lee, Sung-Hak;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.537-549
    • /
    • 1996
  • This study aims at investigating the correlation of microstructure and mechanical properties of the AZ91 Mg/Al borate whisker composites fabricated by squeeze csting technique with a variation of applied pressure. Microstructure observation and in-situ fracture tests were conducted on the composites to identify the microfracture process. Detailed microstructural analyses indicated that the grain refinement could be achieved with applied pressure and the little change in volume fraction on reinforcing whiskers could be carried out. It was also found clearly from in-situ observation of crack initiation and propagation that in the composite processed by the lower applied pressure, microcracks were initiated earily at whisker/matrix interfaces, thereby resulting in the drop in strength. In the composite processed by the higher applied pressure, on the other hand, planar slip lines were well developed in the matrix, and then propagated through whiskers without whisker/matrix decohesion. Thus, the effect of the applied pressure on microstructure and mechanical properties can be explained by grain refinement, increased amounts of reinforcements, and improvement of whisker/matrix interfacial strength as the applied pressure in increased.

  • PDF

Mechanical Behavior of $Al_2O_3$ Dispersed CFRP Hybrid Composites at Room and Cryogenic Temperature

  • Manwar Hussain;Choa, Yong-Ho;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.390-394
    • /
    • 1999
  • Al2O3 particles were dispersed into carbon fiber reinforced epoxy composites to fabricate hybrid epoxy based composites. Interface behavior and mechanical properties of these hybrid composites were studied at room and liquid nitrogen temperature and liquid nitrogen temperature and the results were compared with the those of carbon fiber reinforced composites to investigate their applicability at room and cryogenic temperature. Young's modulus in-perpendicular to fiber direction and interlaminar shear strength at room temperature and the thermal contraction down to cryhogenic temperature were improved significantly by the addition of AL2O3 filler into the epoxy matrix. The effect of Al2O3 particle addition on mechanical properties were discussed.

  • PDF

WEAR BEHAVIOR OF SiC-PARTICLE REINFORCED ALUMINUM MATRIX COMPOSITES IN VARIOUS ENVIRONMENTS

  • Miyajima, T.;Yamamoto, T.;Iwai, Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.241-242
    • /
    • 2002
  • Wear behavior or SiC-particle reinforced aluminum matrix composites (MMC) were investigated by pin-on-disk tests in vacuum with various pressures, argon, and air with various levels of humidity. The wear rate of 2024Al and MMC increased in the following order: in a vacuum at $5.0{\times}10^{-4}$ Pa, at 1.0Pa, in argon at 0% RH, in argon at 60% RH, in argon at 90% RH, in air at 0% RH, in air at 60% RH and in air at 90% RH. In other words, the influence or environment on wear becomes stronger in the following order: moisture, oxygen, and a combination of moisture and oxygen. In various environments, the difference of the wear rate of 2024Al and MMC was compared. In argon and air at 0% RH, the wear rates of MMC were higher than that of 2024Al. In contrast, in argon and air at 60, 90% RH, the wear rates of MMC were lower than that of 2024Al.

  • PDF

Fabrication and Mechanical Properties of TiNi/6061Al Smart Composite by Permanent Mold Casting (금형주조법을 이용한 TiNi/6061Al 지적복합재료의 제조 및 기계적 특성)

  • Kim, Soon-Kook;Lee, Jun-Hee;Yun, Doo-Pyo;Park, Young-Chul;Lee, Gyu-Chang;Kim, Young-Hee
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.534-540
    • /
    • 1998
  • 6061Al-matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by Permanent Mold Casting to investigate the mechanical properties of the smart composites. The composites have showed good interface bonding as a result of the analysis of SEM and EDX. The smartness of composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stresses in the matrix material when heated after being prestrained. The tensile strength of the composites was tested at temperatures between $90^{\circ}C$ and room temperature with increasing amount of pre-strain, and it showed that the tensile strength at $90^{\circ}C$ was higher than that of the room temperature. Especially, the tensile strength of the composite increases with increasing pre-strain. It showed that hardness of matrix was higher than that of common 6061Al alloy.

  • PDF

R-Curve Behavior of Particulate Composites of ${Al_2}{O_3}$ Containing SiC and $ZrO_2$: II. Theoretical Analysis (SiC와 $ZrO_2$를 함유하는 ${Al_2}{O_3}$ 입자복합체의 균열저항거동: II. 이론적 분석)

  • 나상웅;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.368-375
    • /
    • 2000
  • Fracture toughness of particulate composites of Al2O3/SiC, Al2O3/ZrO2 and Al2O3/ZrO2/SiC was analysed theoretically. According to the suggested particle bridging model for obtaining the R-curve height, the crack extension resistance for the long crack was linearly proportional to the residual calmping stress at the interface between the second phase and the matrix. It was also a function of the particle size and the content. It was confirmed that the rising R-curve behavior of Al2O3 containing 30 vol% SiC particles of 3${\mu}{\textrm}{m}$ was owing to the strong crack bridging by SiC particles. For Al2O3/ZrO2/SiC composites, the tensional stress from the 3${\mu}{\textrm}{m}$ SiC particles was large enough to activate the spontaneous transformation of the ZrO2. The crack extension resistance due to the particle bridging mechanism did not seem to be affected much by the coupled toughening, but its resultant toughness increase could be significantly smaller due to the dependency on the matrix toughness.

  • PDF

Fabrication Process and Characterization of High Thermal Conductivity-Low CTE SiCp/Al Metal Matrix Composites for Electronic Packaging Applications (전자패키징용 고열전도도-저열팽창계수 SiCp/Al 금속복합재료의 제조공정 및 특성평가)

  • 이효수;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.190-194
    • /
    • 2000
  • The fabrication process and thermal properties of 50∼76vo1% SiCp/Al metal matrix composites (MMCs) were investigated. The 50∼76vo1% SiCp/Al MMCs fabricated by pressure infiltration casting process showed that thermal conductivities were 85∼170W/mK and coefficient of thermal expansion (CTE) were ranged 10∼6ppm/K. Specially, the thermal conductivity and CTE of 71vo1%SiCp/Al MMCs were ranged l15∼156W/mK and 6∼7ppm/K, respectively, which showed a improved thermal properties than the conventional electronic packaging materials such as ceramics and metals.

  • PDF

Fabrication Process and Characterization of High Thermal Conductivity-Low CTE SiCp/Al Metal Matrix Composites by Pressure Infiltration Casting Process (가압함침법에 의한 고열전도도-저열팽창계수 SiCp/Al 금속복합재료의 제조공정 및 특성평가)

  • 이효수;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.83-87
    • /
    • 1999
  • The fabrication process and thermal properties of 50~71vol% SiCp/Al metal matrix composites (MMCs) were investigated. The 50~71vol% SiCp/Al MMCs fabricated by pressure infiltration casting process showed that thermal conductivities were 118~170W/mK and coefficient of thermal expansion (CTE) were 9.5~$6.5{\times}10^{-6}/K$. Specially, the thermal conductivity and CTE of 71vol%SiCp/Al MMCs were 115~156W/mK and 6~$7{\times}10^{-6}/K$. respectively, which showed a improved themal properties than the conventional electronic packaging materials such as ceramics and metals.

  • PDF

Fabrication of PTFE/Al Composite Materials by Hot Press Process (가압소결에 의한 PTFE/AI 복합재료 제조)

  • 이길근;김우열
    • Journal of Powder Materials
    • /
    • v.9 no.2
    • /
    • pp.103-109
    • /
    • 2002
  • To investigate the fabrication possibility of a polymer particle dispersed metal matrix composite, polytetrafluorothylene (PTFE) particles were incorporated into the Al by the powder metallurgy process. The characteristics of a PTFE/Al composite were evaluated by measuring the density and hardness, and analysis of XRD, FT-Raman and microstructure. And wear properties of these composites were evaluated under the dry wear condition. It was possible to obtain the PTFE particles stably dispersed Al matrix composites by the hot press process at the sintering temperature of $500^{\circ}C$. The wear coefficient of a PTFE/Al compoite decreased with increasing of the volume fraction of PTFE. The wear weight of a PTFE/Al composite increased with increasing of the volume fractionof PTFE in the range of 0~10 vol.%PTFE, and showed maximum value at 10 vol.%PTFE, and then decreased at 20vol.%PTFE.