• Title/Summary/Keyword: Al layer

Search Result 2,813, Processing Time 0.033 seconds

Effects of Cr and Nb on the nigh Temperature Oxidation of TiAl

  • D.B. Lee;K.B. Park;M. Nakamura
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.319-319
    • /
    • 1999
  • From isothermal and cyclic oxidation tests on thermomechanically treated Ti-5%Al, Ti47%Al-4%Cr, and Ti-48%Al-2%Cr-2%Nb alloys at 800, 900, 1000℃ in air, it was found that Ti-48%Al-2%Cr-2%Nb and Ti-47%Al-4%Cr had the best and the worst oxidation resistance, respectively. The oxide scales consisted primarily of TiO₂and Al₂O₃, with and without a small amount of dissolved Cr and 7b ions, depending on the alloy composition. These ions were slightly enriched inside the inner oxide layer, and strongly enriched around the scale-matrix interface. The outer TiO₂-rich layer was formed by the outward diffusion of Ti ions, while the inner (TiO₂+A1₂O₃,) mixed layer was formed by the inward transport of oxygen. The outward movement of Al ions farmed the intermediate Al₂O₃-rich Iayer, above talc prepared alloys.

Stacked High Voltage Al Electrolytic Capacitors Using Zr-Al-O Composite Oxide

  • Zhang, Kaiqiang;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.757-763
    • /
    • 2019
  • A stacked high-voltage (900 V) Al electrolytic capacitor made with ZrO2 coated anode foils, which has not been studied so far, is realized and the effects of Zr-Al-O composite layer on the electric properties are discussed. Etched Al foils coated with ZrO2 sol are anodized in 2-methyl-1,3-propanediol (MPD)-boric acid electrolyte. The anodized Al foils are assembled with stacked structure to prepare the capacitor. The capacitance and dissipation factor of the capacitor with ZrO2 coated anode foils increase by 41 % and decrease by 50 %, respectively, in comparison with those of Al anode foils. Zr-Al-O composite dielectric layer is formed between separate crystalline ZrO2 with high dielectric constant and amorphous Al2O3 with high ionic resistivity. This work suggests that the formation of a composite layer by coating valve metal oxide on etched Al foil surface and anodizing it in MPD-boric acid electrolyte is a promising approach for high voltage and volume efficiency of capacitors.

Effect of the Heat treatment and Boron on the Hot Corrosion Resistance of the Al Diffusion Coating (Al 확산피복층의 고온 내식성에 미치는 후열처리와 B첨가의 영향)

  • 김태원;윤재홍;이재현;김현수;변응선
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 1999
  • The Ni base superalloy Mar-M247 substrate was aluminized or aluminized after boronizing by the pack cementation under Ar atmosphere. The hot corrosion resistance and after-heat-treatment effect of aluminized specimens were studied by the cyclic hot corrosion test in $Na_2SO_4$-NaCl molten salt. XRD analysis showed that the $Ni_2Al_3$ phase was formed between the coated layer and substrate below 1273K but the NiAl phase above 1273K. The peak of the NiAl phase was developed after heat treatment. Corrosion test showed that corrosion resistance of the specimen with the NiAl phase was better than that with the $Ni_2Al_3$ phase. Corrosion resistance could be improved by heat treatment to form ductile NiAl phase, where cracks were not formed by thermal shock on coating layer. Moreover, it appeared that heat treatment played a role to improve corrosion resistance of Al diffusion coating above 1273K. The existence of boron in the Al diffusion coating layer obstructed outwared diffusion of Cr from the substrate, and it influenced on corrosion resistance of the coating layer by weakening adherence of the oxide scale.

  • PDF

Study on the fabrication of a polycrystalline silicon (pc-Si) seed layer for the pc-Si lamelliform solar cell (다결정 실리콘 박형 태양전지를 위한 다결정 실리콘 씨앗층 제조 연구)

  • Jeong, Hyejeong;Oh, Kwang H.;Lee, Jong Ho;Boo, Seongjae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • We studied the fabrication of polycrystalline silicon (pc-Si) films as seed layers for application of pc-Si thin film solar cells, in which amorphous silicon (a-Si) films in a structure of glass/Al/$Al_2O_3$/a-Si are crystallized by the aluminum-induced layer exchange (ALILE) process. The properties of pc-Si films formed by the ALILE process are strongly determined by the oxide layer as well as the various process parameters like annealing temperature, time, etc. In this study, the effects of the oxide film thickness on the crystallization of a-Si in the ALILE process, where the thickness of $Al_2O_3$ layer was varied from 4 to 50 nm. For preparation of the experimental film structure, aluminum (~300 nm thickness) and a-Si (~300 nm thickness) layers were deposited using DC sputtering and PECVD method, respectively, and $Al_2O_3$ layer with the various thicknesses by RF sputtering. The crystallization of a-Si was then carried out by the thermal annealing process using a furnace with the in-situ microscope. The characteristics of the produced pc-Si films were analyzed by optical microscope (OM), scanning electron microscope (SEM), Raman spectrometer, and X-ray diffractometer (XRD). As results, the crystallinity was exponentially decayed with the increase of $Al_2O_3$ thickness and the grain size showed the similar tendency. The maximum pc-Si grain size fabricated by ALILE process was about $45{\mu}m$ at the $Al_2O_3$ layer thickness of 4 nm. The preferential crystal orientation was <111> and more dominant with the thinner $Al_2O_3$ layer. In summary, we obtained a pc-Si film not only with ${\sim}45{\mu}m$ grain size but also with the crystallinity of about 75% at 4 nm $Al_2O_3$ layer thickness by ALILE process with the structure of a glass/Al/$Al_2O_3$/a-Si.

  • PDF

Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders (AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구)

  • Seo, J.Y.;Yoon, H.S.;Lee, K.Y.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

Sliding Wear Properties of Ni-Al based Intermetallics Layer coated on Aluminum through Reaction Synthesis Process (알루미늄 기판 위 반응합성 Coating 된 Ni-Al계 금속간화합물의 미끄럼마모 특성 해석)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • Ni-Al intermetallic coating technology is an available method for the strengthening of aluminum substrate. In this study, Ni-Al intermetallics were coated on an aluminum substrate through a reaction synthesis process at a temperature lower than melting point of aluminum. And the sliding wear properties of the coatings have been investigated to verify their usability and compared the wear properties with those of a cast Al-12.5%Si alloy and an anodizing layer on aluminum. Results show that the wear rate of the coating layer greatly increased at 1 m/s and 1.5 m/s when compared with that of the cast Al-12.5%Si alloy. Much pitting damages were observed on the worn surfaces at these sliding speeds, unlike at other sliding speeds. The wear of the intermetallic coating layer at these sliding speeds seems to be increased by pitting as a consequence of adhesion. In contrast, wear of the coating layer at other speeds hardly occurs, regardless of wear periods. Nevertheless, the wear properties of the intermetallic coating layer on the aluminum substrate through the reaction synthesis process are more stable than those of anodized aluminum and are superior to those of the cast Al-12.5%Si alloy in a steady-state wear period.

Micro-scale Observation of Corrosion of Hot-Dip Aluminized 11% Cr Stainless Steel

  • Cho, Min-Seung;Park, Choong-Nyeon;Park, Chan-Jin
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.73-77
    • /
    • 2019
  • Hot-dip aluminized coating has been widely used to protect steel substrate against corrosion. In this study, the corrosion behavior of hot-dip aluminized type 409L (11% Cr) stainless steel (SS) was investigated using macro- and micro-scale polarization tests. An Al-Fe-Si alloy layer that was formed due to inter-diffusion of alloying elements between Al coating and SS substrate was observed between Al coating and 409L SS substrate. In both macro- and micro-scale polarization tests, the corrosion potential ($E_{corr}$) of the 409L SS substrate was much nobler than that of the Al coating and alloy layer. $E_{corr}$ of the alloy layer was between that of Al coating and 409L SS substrate. This indicates that the alloy layer can act as a buffer between the more active Al coating and the nobler SS substrate for pit growth in aluminized SS. The presence of the alloy layer appears to be helpful in hindering pitting corrosion of aluminized SS.

Rear Surface Passivation of Silicon Solar Cell with AlON Layer by Reactive Magnetron Sputtering

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Kim, Kyung-Hoon;Kim, Sung-Min;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.430-430
    • /
    • 2012
  • The surface recombination velocity of the silicon solar cell could be reduced by passivation with insulating layers such as $SiO_2$, SiNx, $Al_2O_3$, a-Si. Especially, the aluminium oxide has advantages over other materials at rear surface, because negative fixed charge via Al vacancy has an additional back surface field effect (BSF). It can increase the lifetime of the hole carrier in p-type silicon. The aluminium oxide thin film layer is usually deposited by atomic layer deposition (ALD) technique, which is expensive and has low deposition rate. In this study, ICP-assisted reactive magnetron sputtering technique was adopted to overcome drawbacks of ALD technique. In addition, it has been known that by annealing aluminium oxide layer in nitrogen atmosphere, the negative fixed charge effect could be further improved. By using ICP-assisted reactive magnetron sputtering technique, oxygen to nitrogen ratio could be precisely controlled. Fabricated aluminium oxy-nitride (AlON) layer on silicon wafers were analyzed by x-ray photoelectron spectroscopy (XPS) to investigate the atomic concentration ratio and chemical states. The electrical properties of Al/($Al_2O_3$ or $SiO_2/Al_2O_3$)/Si (MIS) devices were characterized by the C-V measurement technique using HP 4284A. The detailed characteristics of the AlON passivation layer will be shown and discussed.

  • PDF

Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구)

  • Song, Se Young;Kang, Min Gu;Song, Hee-Eun;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.754-759
    • /
    • 2013
  • Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.

Brazing of Aluminium Nitride(AlN) to Copper with Ag-based Active Filler Metals (은(Ag)계 활성금속을 사용한 질화 알미늄(AlN)과 Cu의 브레이징)

  • Huh, D.;Kim, D.H.;Chun, B.S.
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.134-146
    • /
    • 1995
  • Aluminium nitride(AlN) is currently under investigation as potential candidate for replacing alumium oxide(Al$_{2}$ $O_{3}$) as a substrate material for for electronic circuit packaging. Brazing of aluminium nitride(AlN) to Cu with Ag base active alloy containing Ti has been investigated in vacuum. Binary Ag$_{98}$ $Ti_{2}$(AT) and ternary At-1wt.%Al(ATA), AT-1wt.%Ni(ATN), AT-1wt.% Mn(ATM) alloys showed good wettability to AlN and led to the development of strong bond between brate alloy and AlN ceramic. The reaction between AlN and the melted brazing alloys resulted in the formation of continuous TiN layers at the AlN side iterface. This reaction layer was found to increase by increase by increasing brazing time and temperature for all filler metals. The bond strength, measured by 4-point bend test, was increased with bonding temperature and showed maximum value and then decreased with temperature. It might be concluded that optimum thickness of the reaction layer was existed for maximum bond strength. The joint brazed at 900.deg.C for 1800sec using binary AT alloy fractured at the maximum load of 35kgf which is the highest value measured in this work. The failure of this joint was initiated at the interface between AlN and TiN layer and then proceeded alternately through the interior of the reaction layer and AlN ceramic itself.

  • PDF