• Title/Summary/Keyword: Al films

Search Result 1,805, Processing Time 0.032 seconds

Study on the Investization of Hot Sealing Difference of the Same Flexible Packaging (납품처가 다른 포장용 필름의 열접착 트러블 원인 규명에 관한 연구)

  • Park, Keun-Sil
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.8 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • We received 2 types flexible packaging films from two companies that laminated PET $16{\mu}m/dry$ lamination/aluminium foil $7{\mu}m/dry$ lamination/CPP $80{\mu}m$ films. For the reason of hot sealing's trouble through filling process, We separated each layer and compared thicks, film types and tested IR, DSC and sensory test. At the result, one sample's thick is different but film types is same between samples. Optimum hot-sealing conditions between two samples is $195^{\circ}C\;and\;210^{\circ}C$. The difference is $15^{\circ}C$. According to test of direct filling packaging process by four face fluid filling machine, two sample's sealing strength of hot-sealing is $4.76kg/cm2/15mm$(sample of optimum hot-sealing condition is $195^{\circ}C$) and $3.84kg/cm2/15mm(210^{\circ}C)$.

  • PDF

The Study on Dielectric Property and Thermal Stability of $Ta_2O_{5}$ Thin-films ($Ta_2O_{5}$ 커패시터 박막의 유전 특성과 열 안정성에 관한 연구)

  • Kim, In-Seong;Lee, Dong-Yun;Song, Jae-Seong;Yun, Mu-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.5
    • /
    • pp.185-190
    • /
    • 2002
  • Capacitor material utilized in the downsizing passive devices and dynamic random access memory(DRAM) requires the physical and electrical properties at given area such as capacitor thickness reduction, relative dielectric constant increase, low leakage current and thermal stability. Common capacitor materials, $SiO_2$, $Si_3N_4$, $SiO_2$/$Si_3N_4$,TaN and et al., used until recently have reached their physical limits in their application to several hundred angstrom scale capacitor. $Ta_2O_{5}$ is known to be a good alternative to the existing materials for the capacitor application because of its high dielectric constant (25 ~35), low leakage current and high breakdown strength. Despite the numerous investigations of $Ta_2O_{5}$ material, there have little been established the clear understanding of the annealing effect on capacitance characteristic and conduction mechanism, design and fabrication for $Ta_2O_{5}$ film capacitor. This study presents the structure-property relationship of reactive-sputtered $Ta_2O_{5}$ MIM capacitor structure processed by annealing in a vacuum. X-ray diffraction patterns skewed the existence of amorphous phase in as-deposited condition and the formation of preferentially oriented-$Ta_2O_{5}$ in 670, $700^{\circ}C$ annealing. On 670, $700^{\circ}C$ annealing under the vacuum, the leakage current decrease and the enhanced temperature-capacitance characteristic stability. and the leakage current behavior is stable irrespective of applied electric field. The results states that keeping $Ta_2O_{5}$ annealed at vacuum gives rise to improvement of electrical characteristics in the capacitor by reducing oxygen-vacancy and the broken bond between Ta and O.

Temperature-dependent Photoluminescence Study on Aluminum-doped Nanocrystalline ZnO Thin Films by Sol-gel Dip-coating Method

  • Nam, Giwoong;Lee, Sang-Heon;So, Wonshoup;Yoon, Hyunsik;Park, Hyunggil;Kim, Young Gue;Kim, Soaram;Kim, Min Su;Jung, Jae Hak;Lee, Jewon;Kim, Yangsoo;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.95-98
    • /
    • 2013
  • The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons ($D^0X$), two-electron satellite (TES), free-to-neutral-acceptors (e,$A^0$), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for $D^0X$ in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for $D^0X$ transitions.

Magnetoresistance Properties of Hybrid GMR-SV Films with Nb Buffer Layers (Nb 버퍼층과 거대자기저항-스핀밸브 하이브리드 다층박막의 자기저항 특성)

  • Yang, Woo-Il;Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.82-86
    • /
    • 2017
  • The IrMn based GMR-SV films with three different buffer layers were prepared on Corning glass by using ion beam deposition and DC magnetron sputtering method. The major and minor magnetoresistance curves for three different buffer layers beneath the structure of NiFe(15 nm)/CoFe(5 nm)/Cu(2.5 nm)/CoFe(5 nm)/NiFe(7 nm)/IrMn(10 nm)/Ta(5 nm) at room temperature have shown different magnetoresistance properties. When the samples were annealed at $250^{\circ}C$ in vacuum, the magnetoresistance ratio, the coercivity of pinned ferromagnetic layer, and the interlayer coupling field of free ferromagnetic layer were enhanced while the exchange bias coupling field did not show noticeable changes.

Characteristics of Organic Light-Emitting Diodes using PECCP Langmuir-Blodgett(LB) Film as an Emissive Layer (PECCP LB 박막을 발광층으로 사용한 유기 발광 다이오드의 특성)

  • Lee, Ho-Sik;Lee, Won-Jae;Park, Jong-Wook;Kim, Tae-Wan;Dou--Yol Kang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.111-114
    • /
    • 1999
  • Electroluminescence(EL) devices based on organic thin films have been attracted lots of interests in large-area light-emitting display. In this stuffy, an emissive layer was fabricated using Langmuir-Blodgett(LB) technique in organic light-emitting (OLEDs). This emissive organic material was synthesized and named PECCP[poly(3.6-N-2-ethylhexyl carbazolyl cyanoterephthalidene)] which has a strong electron donor group and an electron acceptor group in main chain repeated unit. This material has good solubility in common organic solvents such as chloroform. THF, etc, and has a good stability in air. The Langmuir-Blodgett(LB) technique has the advantage of precise control of the thickness down to the molecular scale, In particular, by varying the film thickness it is possible to investigate the metal/polymer interface. Optimum conditions for the LB film deposition are usually determined by investigating a relationship between a surface pressure $\pi$ and an effective are A occupied by one molecule on the subphase. The LB films were deposited on an indium-tin-oxide(ITO) glass at a surface pressure of 10 mN/m and dipping speed of 12 mm/min after spreading PECCP solution on distilled water surphase at room temperature, Cell structure was ITO/PECCP LB film/Alq$_3$/Al. We considered PECCP as a hole -transport layer inserted between the emissive layer and ITO. We also used Alq$_3$ as an emissive layer and an electron transport layer. We measured current-voltage(I-V) characteristics, UV/visible absorption, PL spectrum and EL spectrum of the OLEDs.

  • PDF

Development of Atomic Nitrogen Source Based on a Dielectric Barrier Discharge and Low Temperature Growth GaN (유전체장벽방전에 의한 질소함유 활성종의 개발 및 저온 GaN 박막 성장)

  • Kim, Joo-Sung;Byun, Dong-Jin;Kim, Jin-Sang;Kum, Dong-Wha
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1216-1221
    • /
    • 1999
  • GaN films were deposited on sapphire [$Al_2O_3(0001)$] substrates at relatively low temperature by MOCVD using N-atom source based on a Dielectric Barrier Discharged method. Ammonia gas($NH_3$is commonly used as an N-source to grow GaN films in conventional MOCVD process, and heating to high temperature is required to provide sufficient dissociation of $NH_3$. We used a dielectric barrier discharge method instead of $NH_3$ to grow GaN film relatively low temperature. DBD is a type of discharge, which have at least one dielectric material as a barrier between electrode. DBD is a type of controlled microarc that can be operated at relatively high gas pressure. Crystallinity and surface morphology depend on growth temperature and buffer layer growth. With the DBD-MOCVD method, wurtzite GaN which is dominated by the (0001) reflection was successfully grown on sapphire substrate even at $700^{\circ}C$.

  • PDF

Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness (NiO 완충층 두께 조절에 의한 OLEDs 전기-광학적 특성)

  • Choi, Gyu-Chae;Chung, Kook-Chae;Kim, Young-Kuk;Cho, Young-Sang;Choi, Chul-Jin;Kim, Yang-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.811-817
    • /
    • 2011
  • In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.

MgFe$_2$/GeO$_2$ AR Coating on o-type(100) Cz Silicon Solar Cells

  • Lim, D.G.;Lee, I.;Lee, U.J.;Yi, J.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.11-15
    • /
    • 2000
  • This paper presents a process optimization of antireflection (AR) coating on crystalline Si solar cells. Theoretical and experimental investigations were performed on a double-layer AR(DLAR) coating of MgFe$_2$/GeO$_2$. We investigated GeO$_2$ films as an AR layer because they have a proper refractive index of 2.46 and demonstrate the same lattice constant as Si substrate. RF sputter grown GeO$_2$ film showed deposition temperature strong dependence. The GeO$_2$ at 400$\^{C}$ exhibited a strong (111) preferred orientation and the lowest surface roughness of 6.87 $\AA$. Refractive index of MgFe$_2$film was measured as 1.386 for the most of growth temperature. An optimized DLAR coating showed a reflectance as low as 2.04% in the wavelengths ranged from 0.4 ㎛ to 1.1 ㎛. Solar cells with a structure of MgFe$_2$/GeO$_2$/Ag/N$\^$+//p-type Si/P$\^$+//Al were investigated with the without DLAR coatings. We achieved the efficiency of solar cells greater than 15% with 3.12% improvement with DLAR coatings. Further details about MgFe$_2$,GeO$_2$ films, and cell fabrication parameters are presented in this paper.

  • PDF

Preparation and Photo Conducting Characteristics of Plasma Polymerized Organic Photorecepter (플라즈마 중합법에 의한 유기 감광체 박막의 제조와 광전도 특성)

  • 박구범
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.19-25
    • /
    • 1999
  • The photoreceptor films with double layer structure were prepared by the plasma polymerization and the dip-coating method. The blocking layer was coated with A1$_2$O$_3$ on the Al substrate and the charge generation layer was formed by H$_2$ phthalocyanine (H$_2$Pc). Poly 9-Vinylcarbazole was used as a charge transport layer. H$_2$Pc film prepared by the vacuum evaporation had absorption peaks on 613.6[nm] and 694.8[nm], and H$_2$Pc film prepared by the plasma polymerization had a dull peaks between 600 and 700[nm]. The surface potential of PVCz increased with increasing the applied voltage and the thickness of PVCz. The dark decay characteristic, the light decay time and the residual time increased with increasing the thickness of PVCz. The surface charge of PVCz of 15[${\mu}{\textrm}{m}$] thickness was 134[nc/$\textrm{cm}^2$] at the surface potential of -600[V] and the charge generation efficiency of H$_2$Pc was 0.034.

  • PDF

Effect of negative oxygen ion bombardment on the gate bias stability of InGaZnO

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.160-160
    • /
    • 2015
  • InGaZnO (IGZO) thin-film transistors (TFTs) are very promising due to their potential use in high performance display backplane [1]. However, the stability of IGZO TFTs under the various stresses has been issued for the practical IGZO applications [2]. Up to now, many researchers have studied to understand the sub-gap density of states (DOS) as the root cause of instability [3]. Nomura et al. reported that these deep defects are located in the surface layer of the IGZO channel [4]. Also, Kim et al. reported that the interfacial traps can be affected by different RF-power during RF magnetron sputtering process [5]. It is well known that these trap states can influence on the performances and stabilities of IGZO TFTs. Nevertheless, it has not been reported how these defect states are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOI) can be generated by electron attachment in oxygen atom near target surface and accelerated up to few hundreds eV by self-bias of RF magnetron sputter; the high energy bombardment of NOIs generates bulk defects in oxide thin films [6-10] and can change the defect states of IGZO thin film. In this study, we have confirmed that the NOIs accelerated by the self-bias were one of the dominant causes of instability in IGZO TFTs when the channel layer was deposited by conventional RF magnetron sputtering system. Finally, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process [9-10] to eliminate the NOI bombardment effects and present how much to be improved the instability of IGZO TFTs by this new deposition method.

  • PDF