• Title/Summary/Keyword: Al films

Search Result 1,801, Processing Time 0.026 seconds

Effects of Amorphous Si3N4 Phase on the Mechanical Properties of Ti-Al-Si-N Nanocomposite Films Prepared by a Hybrid Deposition System (하이브리드 증착 시스템에 의해 합성된 나노복합체 Ti-Al-Si-N 박막 내 존재하는 Si3N4 비정질상이 기계적 특성에 미치는 영향)

  • An, Eun-Sol;Jang, Jae-Ho;Park, In-Uk;Jeong, U-Chang;Kim, Gwang-Ho;Park, Yong-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.304-304
    • /
    • 2014
  • Quaternary Ti-Al-Si-N films were deposited on WC-Co substrates by a hybrid deposition system of arc ion plating (AIP) method for Ti-Al source and DC magnetron sputtering technique for Si incorporation. The synthesized Ti-Al-Si-N films were revealed to be composites of solid-solution (Ti,Al)N crystallites and amorphous $Si_3N_4$ by instrumental analyses. The Si addition in Ti-Al-N films affected the refinement and uniform distribution of crystallites by percolation phenomenon of amorphous silicon nitride, similarly to Si effect in TiN film. As the Si content increased up to about 9 at.%, the hardness of Ti-Al-N film steeply increased from 30 GPa to about 50 GPa. The highest microhardness value (~50 GPa) was obtained from the Ti-Al-Si-N film having the Si content of 9 at.%, the microstructure of which was characterized by a nanocomposite of $nc-(Ti,Al)N/a-Si_3N_4$.

  • PDF

Deposition and high temperature oxidation characterization of CrAlSiN thin films

  • Kim, Sun-Kyu;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.7-9
    • /
    • 2007
  • Thin films of CrAlSiN were deposited on SKD11 tool steel substrate using Cr and AlSi cathodes by a cathodic arc plasma deposition system. The influence of process parameters on the deposited film properties were investigated. The oxidation characteristics of the films were studied at temperatures ranging from 800 and 1000+C up to 50 h in air. The films showed superhardness and good oxidation resistance..

  • PDF

High-temperature Oxidation of Nano-multilayered AlTiSiN Thin Films deposited on WC-based carbides

  • Hwang, Yeon Sang;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.119-124
    • /
    • 2013
  • Nano-multilayered, crystalline AlTiSiN thin films were deposited on WC-TiC-Co substrates by the cathodic arc plasma deposition. The deposited film consisted of wurtzite-type AlN, NaCl-type TiN, and tetragonal $Ti_2N$ phases. Their oxidation characteristics were studied at 800 and $900^{\circ}C$ for up to 20 h in air. The WC-TiC-Co oxidized fast with large weight gains. By contrast, the AlTiSiN film displayed superior oxidation resistance, due mainly to formation of the ${\alpha}-Al_2O_3$-rich surface oxide layer, below which an ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale existed. Their oxidation progressed primarily by the outward diffusion of nitrogen, combined with the inward transport of oxygen that gradually reacted with Al, Ti, and Si in the film.

Ge-Al Multilayer Thin Film as an Anode for Li-ion Batteries

  • Lee, Jae-Young;Ngo, Duc Tung;Park, Chan-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.249-256
    • /
    • 2017
  • We design Ge-Al multilayer assemblies as anode materials for Li-ion batteries, in which Ge and Al thin films are alternately deposited by a radio sputtering method. By sandwiching Ge layers between Al layer, the cyclability, rate capability, and capacity of Ge are improved significantly. The success of the Ge-Al multilayer is attributed to the Al films. To maintain the integrity of electrical contact, Al acts as an elastic layer, which can expand or shrink with the Ge film upon lithiation or delithiation. In addition, the presence of the Al film on the surface can prevent direct contact of Ge and electrolyte, thereby reducing the growth of a SEI layer. Importantly, with high electrical and ionic conductivities, the Al film provides efficient electrical and ionic routes for electrons and Li-ions to access the Ge film, promoting a high specific capacity and high rate capability for Ge.

Preparing of the AI electrode for OLED by Sputtering Methode (스퍼터링법을 이용한 OLED용 Al 전극의 제작)

  • Kim, Kyung-Hwan;Keum, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.72-75
    • /
    • 2005
  • In this study Al electrode for OLED was deposited by FTS(Facing Targets Sputtering) system which can deposit thin films with low substrate damage. The Al thin films were deposited on the cell(LiF/EML/HTL/Bottom electrode) as a function of working gas such as Ar, Kr or mixed gas. Also Al thin films were prepared with working gas pressure (1, 6 mTorr ). The film thickness and I-V curve of Al/cell were evaluated by $\alpha$-step and semiconductor parameter (HP4156A) measurement. In the results, when Al thin film were deposited using pure Ar gas, the turn-on voltage of Al/cell was about 11[V]. And the turn-on voltage of Al/cell can be decrease to about 7[V].

  • PDF

The Study of the Etch Characteristics of the HfAlO3 Thin Film in O2/BCl3/Ar Plasma (O2/BCl3/Ar 플라즈마를 이용한 HfAlO3 박막의 식각특성 연구)

  • Ha, Tae-Kyung;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.924-928
    • /
    • 2010
  • In this study, $HfAlO_3$ thin films using gate insulator of MOSFET were etched in inductively coupled plasma. The etch characteristics of the $HfAlO_3$ thin films has been investigated by varying $O_2/BCl_3$/Ar gas mixing ratio, a RF power, a DC bias voltage and a process pressure. As the $O_2$ concentration increases further, $HfAlO_3$ was redeposited. As increasing RF power and DC bias voltage, etch rates of the $HfAlO_3$ thin films increased. Whereas, as decreasing of the process pressure, etch rates of the $HfAlO_3$ thin films increased. The chemical reaction on the surface of the etched the $HfAlO_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS). These peaks moved a binding energy. This chemical shift indicates that there are chemical reactions between the $HfAlO_3$ thin films and radicals and the resulting etch by-products remain on the surface.

Electrical Properties of Al2O3 Films Grown by the Electron Cyclotron Resonance Plasma-Enhanced Atomic Layer Deposition (ECR-PEALD) and Thermal ALD Methods (전자 사이클로트론 공명 플라즈마와 열 원자층 증착법으로 제조된 Al2O3 박막의 물리적·전기적 특성 비교)

  • Yang, Dae-Gyu;Kim, Yang-Soo;Kim, Jong-Heon;Kim, Hyoung-Do;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.295-300
    • /
    • 2017
  • Aluminum-oxide($Al_2O_3$) thin films were deposited by electron cyclotron resonance plasma-enhanced atomic layer deposition at room temperature using trimethylaluminum(TMA) as the Al source and $O_2$ plasma as the oxidant. In order to compare our results with those obtained using the conventional thermal ALD method, $Al_2O_3$ films were also deposited with TMA and $H_2O$ as reactants at $280^{\circ}C$. The chemical composition and microstructure of the as-deposited $Al_2O_3$ films were characterized by X-ray diffraction(XRD), X-ray photo-electric spectroscopy(XPS), atomic force microscopy(AFM) and transmission electron microscopy(TEM). Optical properties of the $Al_2O_3$ films were characterized using UV-vis and ellipsometry measurements. Electrical properties were characterized by capacitance-frequency and current-voltage measurements. Using the ECR method, a growth rate of 0.18 nm/cycle was achieved, which is much higher than the growth rate of 0.14 nm/cycle obtained using thermal ALD. Excellent dielectric and insulating properties were demonstrated for both $Al_2O_3$ films.

Atomic Layer Deposition of Al2O3 Thin Films Using Dimethyl Aluminum sec-Butoxide and H2O Molecules

  • Jang, Byeonghyeon;Kim, Soo-Hyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.430-437
    • /
    • 2016
  • Aluminum oxide ($Al_2O_3$) thin films were grown by atomic layer deposition (ALD) using a new Al metalorganic precursor, dimethyl aluminum sec-butoxide ($C_{12}H_{30}Al_2O_2$), and water vapor ($H_2O$) as the reactant at deposition temperatures ranging from 150 to $300^{\circ}C$. The ALD process showed typical self-limited film growth with precursor and reactant pulsing time at $250^{\circ}C$; the growth rate was 0.095 nm/cycle, with no incubation cycle. This is relatively lower and more controllable than the growth rate in the typical $ALD-Al_2O_3$ process, which uses trimethyl aluminum (TMA) and shows a growth rate of 0.11 nm/cycle. The as-deposited $ALD-Al_2O_3$ film was amorphous; X-ray diffraction and transmission electron microscopy confirmed that its amorphous state was maintained even after annealing at $1000^{\circ}C$. The refractive index of the $ALD-Al_2O_3$ films ranged from 1.45 to 1.67; these values were dependent on the deposition temperature. X-ray photoelectron spectroscopy showed that the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ were stoichiometric, with no carbon impurity. The step coverage of the $ALD-Al_2O_3$ film was perfect, at approximately 100%, at the dual trench structure, with an aspect ratio of approximately 6.3 (top opening size of 40 nm). With capacitance-voltage measurements of the $Al/ALD-Al_2O_3/p-Si$ structure, the dielectric constant of the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ was determined to be ~8.1, with a leakage current density on the order of $10^{-8}A/cm^2$ at 1 V.

Optical properties and Growth of CuAlSe$_2$ Single Crystal Thin Film by Hot Wal1 Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막 성장과 점결함 특성)

  • Hong, Kwang-Joon;Yoo, Sang-Ha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.76-77
    • /
    • 2005
  • Single crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at 410$^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$ source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X-ray diffraction (DCXO). The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorpt ion spectra was wel1 described by the Varshni's relation, $E_g$(T) = 2.8382 eV - ($8.86\times10^{-4}$ eV/H)$T_2$/(T + 155K). After the as-grown single crystal $CuAlSe_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal $CuAlSe_2$ thin films has been investigated by PL at 10 K. The native defects of $V_{cd}$, $V_{se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or acceptors. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal $CuAlSe_2$ thin films to an optical n-type. Also. we confirmed that hi in $CuAlSe_2$/GaAs did not form the native defects because Al in single crystal $CuAlSe_2$ thin films existed in the form of stable bonds.

  • PDF

Effects of Growth Rate and III/V Ratio on Properties of AlN Films Grown on c-Plane Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy

  • Lim, Se Hwan;Shin, Eun-Jung;Lee, Hyo Sung;Han, Seok Kyu;Le, Duc Duy;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.579-585
    • /
    • 2019
  • In this study, we investigate the effect of Al/N source ratios and growth rates on the growth and structural properties of AlN films on c-plane sapphires by plasma-assisted molecular beam epitaxy. Both growth rates and Al/N ratios affect crystal qualities of AlN films. The full width at half maximum (FWHM) values of ($10{\bar{1}}5$) X-ray rocking curves (XRCs) change from 0.22 to $0.31^{\circ}$ with changing of the Al/N ratios, but the curves of (0002) XRCs change from 0.04 to $0.45^{\circ}$ with changing of the Al/N ratios. This means that structural deformation due to dislocations is slightly affected by the Al/N ratio in the ($10{\bar{1}}5$) XRCs but affected strongly for the (0002) XRCs. From the viewpoint of growth rate, the AlN films with high growth rate (HGR) show better crystal quality than the low growth rate (LGR) films overall, as shown by the FWHM values of the (0002) and ($10{\bar{1}}5$) XRCs. Based on cross-sectional transmission electron microscope observation, the HGR sample with an Al/N ratio of 3.1 shows more edge dislocations than there are screw and mixed dislocations in the LGR sample with Al/N ratio of 3.5.