• Title/Summary/Keyword: Al coordination environment

Search Result 5, Processing Time 0.022 seconds

Synthesis and Spectroscopic Characterization of Vanadium incorporated V-AlMCM-41 Molecular Sieves

  • Back, Gern-Ho;Yu, Jong-Sung;Lee, Hye-Young;Lee, Yong-Ill
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.141-154
    • /
    • 2006
  • A solid-state reaction of $V_2O_5$ with AlMCM-41 followed by calcinations generated $V^{5+}$ species in the mesoporous materials. Dehydration results in the formation of a vanadyl species, $VO^{2+}$, that can be characterized by electron spin resonance (ESR). The chemical environment of the vanadium centers in V-AlMCM-41 was investigated by XRD, EDX, diffuse reflectance UV-VIS, ESR, $^{29}Si,\;^{27}Al,\;and\;^{51}V$ NMR. It was found that the vanadium species on the wall surface and inside the wall of the hexagonal tubular wall of the V-AlMCM-41 were completely oxidized to tetrahedral $V^{5+}$ and transformed to square pyramidal by additional coordination to water molecules upon hydration. The oxidized $V^{5+}$ species on the wall surfaces and inside the wall were also reversibly reduced to $VO^{2+}$ species or lower valences by thermal process.

  • PDF

Pressure-load Calibration of Multi-anvil Press at Ambient Temperature through Structural Change in Cold Compressed Amorphous Pyrope (비정질 파이로프의 저온 압축에 따른 구조 변화를 이용한 멀티 앤빌 프레스의 상온 압력-부하 보정)

  • Lhee, Juho;Kim, Yong-Hyun;Lee, A Chim;Kim, Eun Jeong;Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.65-73
    • /
    • 2022
  • The proper estimation of physical and chemical properties of Earth materials and their structures at high pressure and high temperature conditions is key to the full understanding of diverse geological processes in Earth and planetary interiors. Multi-anvil press - high-pressure generating device - provides unique information of Earth materials under compression, mainly relevant to Earth's upper mantle. The quantitative estimation of the relationship between the oil load within press and the actual pressure conditions within the sample needs to be established to infer the planetary processes. Such pressure-load calibration has often been based on the phase transitions of crystalline earth materials with known pressure conditions; however, unlike at high temperature conditions, phase transitions at low (or room) temperatures can be sluggish, making the calibration at such conditions challenging. In this study, we explored the changes in Al coordination environments of permanently densified pyrope glasses upon the cold compression using the high-resolution 27Al MAS and 3QMAS NMR. The fractions of highly coordinated Al in the cold compressed pyrope glasses increase with increasing oil load and thus, the peak pressure condition. Based on known relationship between the peak pressure and the Al coordination environment in the compressed pyrope glasses at room temperature, we established a room temperature pressure-load calibration of the 14/8 HT assembly in 1,100-ton multi-anvil press. The current results highlight the first pressure-load calibration of any high pressure device using high-resolution NMR. Irreversible structural densification upon cold compression observed for the pyrope glasses provides insights into the deformation and densification mechanisms of amorphous earth materials at low temperature and high pressure conditions within the subducting slabs.

Synthesis and Spectroscopic Characterization of Vanadium-Incorporated V-AlMCM-48 Mesoporous Material (바나듐이 들어있는 Mesoporous V-AlMCM-48 분자체의 합성 및 분광학적 특성 조사)

  • Back, Gernho;Yu, Jong-Sung;Park, Sung-Kun;Lee, Chul Wee;Won, Taejin
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.369-374
    • /
    • 2006
  • A solid-state reaction of $V_2O_5$ with AlMCM-48 followed by calcination generated very weak paramagnetic $VO^{2+}$ species in the mesoporous material. Dehydration and subsequent reduction with CO result in the formation of vanadyl $VO^{2+}$ species that can be characterized by EPR. The chemical environment of vanadium centers in $VO^{2+}-AlMCM-48$ was investigated by XRD, EDX, DR-UV-Vis, EPR,$^{29}Si$ and $^{27}Al$ and $^{51}V$ NMR. Vanadium species in MCM-48 are existed as pseudotetrahedral $VO^{2+}$ state when they were dehydrated or reduced with CO. The coordination of water on vanadyl ions transformed their structure to distorted octahedral.

Design and Implementation of a Distributed Data Mining Framework (분산된 데이터마이닝을 위한 프레임워크의 설계 및 구현)

  • Kadel, Prakash;Choi, Ho-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.336-340
    • /
    • 2007
  • We envisage that grid computing environments allow us to implement distributed data mining services, that is, those applications which analyze large sets of geographically distributed databases and information using the computational power and resources of a grid environment. This paper describes an experimental framework towards such a distributed data mining approach, including design considerations and a prototype implementation. Based on the "Knowledge Grid" architecture suggested by Cannataro et al., we identify four major components - user node, broker node, data node, and computation node - and define their individual roles. For implementing the prototype, we have investigated methods for utilizing distributed resources within a grid computing environment, e.g., communication and coordination among the various resources available.

  • PDF

Synthesis of AlPO4-type Mesoporous Materials Using Alum Sludge (Alum 슬러지를 이용한 AlPO4-계 다공성 물질의 합성)

  • Kang, Kwang Cheol;Kim, Young Ho;Kim, Jin-man;Lee, Choul Ho;Rhee, Seog Woo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-177
    • /
    • 2011
  • In this study, the formation of $AlPO_4$-type porous materials from alum sludge was investigated. The materials were synthesized by the reaction of aluminum hydroxide and phosphoric acid with an organic template. Cationic surfactant, natural humic acid, and amino acids were used for the organic template. The residual organic templates were removed by calcination at $600^{\circ}C$ in the air. Powder X-ray diffraction patterns showed the charicteristic patterns of the $AlPO_4$-type porous materials. The morphology of the material was examined using a scanning electron microscopy. The coordination environment of $Al^{3+}$ ion was investigated by $^{27}Al$ MAS NMR technique. Both tetrahedrally and octahedrally coordinated$Al^{3+}$ ions were found in the as-synthesized samples while all $Al^{3+}$ ions were tetrahedrally coordinated in the calcined products. The development of mesopore in the solid material was confirmed by the measurement of BET specific surface area. Finally, they were used for removal of toxic formaldehyde from the air and the formaldehyde molecules were adsorbed on the surface of pores. In conclusion, $AlPO_4$-type porous materials from alum sludge might be applicable in the removal of toxic volatile organic compounds from the air.