• 제목/요약/키워드: Al alloy powder

검색결과 392건 처리시간 0.023초

전자빔을 이용한 물리기상증착법으로 제조된 열차폐용 4 mol% YSZ 코팅의 내열특성 (Thermal Durability of 4YSZ Thermal Barrier Coating Deposited by Electron Beam PVD)

  • 박찬영;양영환;김성원;이성민;김형태;임대순;장병국;오윤석
    • 한국분말재료학회지
    • /
    • 제20권6호
    • /
    • pp.460-466
    • /
    • 2013
  • 4 mol% Yttria-stabilized zirconia (4YSZ) coatings with $200{\mu}m$ thick are fabricated by Electron Beam Physical Vapor Deposition (EB-PVD) for thermal barrier coating (TBC). $150{\mu}m$ of NiCrAlY based bond coat is prepared by conventional APS (Air Plasma Spray) method on the NiCrCoAl alloy substrate before deposition of top coating. 4 mol% YSZ top coating shows typical tetragonal phase and columnar structure due to vapor phase deposition process. The adhesion strength of coating is measured about 40 MPa. There is no delamination or cracking of coatings after thermal cyclic fatigue and shock test at $850^{\circ}C$.

$Mn_3O_4$ 분진으로부터 고순도 훼로망간 제조에 관한 연구 (A Study on Making of High-Purity Ferro-manganese from $Mn_3O_4$ Waste Dust)

  • 김윤채;송영준;박영구
    • 한국응용과학기술학회지
    • /
    • 제28권2호
    • /
    • pp.135-139
    • /
    • 2011
  • In order to make high-purity ferro-manganese from $Mn_3O_4$ waste dust, the application of aluminothermite process to the reduction of the waste dust was investigated. The mixture from $Mn_3O_4$ dust as metallic source and Al metal powder as the reductant ignited, and reduced with an extremely intense exothermic reaction. The rapid propagation of the aluminothermite reaction occurred spontaneously and stably by ignition of the mixture. The Manganese having some alloy elements emerged as liquids due to the high temperatures reached up to about $2,500^{\circ}C$ and separated from the liquid by their differences of specific gravity. The result of thermite reaction showed the fact that can be obtained high purity ferro-manganese which have over about 90% of manganese content and lower impurities such as C, P, S than those of KS D3712 specification. The recovery of manganese from $Mn_3O_4$ dust was lower level of about 65% than about 75% from manganese ore by electric furnace process, that is due to spatter loss because of its extremely intense thermite reaction. But it will be improved by the process designed to provide CaO as the cooler or to use the Al metal powder having larger particle size distribution.

Leaching 공정으로 제조한 표면 다 기공 Ti-HA 생체재료의 표면 조직 및 기계적 성질의 평가 (Evaluation of Surface Macrostructure and Mechanical Properties of Porous Surface Ti-HA Biomaterial Fabricated by a Leaching Process)

  • 우기도;강덕수;문민석;김상혁
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.369-375
    • /
    • 2010
  • Ti-6Al-4V ELI alloy, which is commonly used as a biomaterial, is associated with a high elastic modulus and poor biocompatibility. This alloy presents a variety of problems on several areas. Therefore, the development of good non-toxic biocompatible biomaterials with a low elastic modulus is necessary. Particularly, hydroxyapatite (HA) is an attractive material for human tissue implantation. This material is widely used as artificial bone due to its good biocompatibility and similar composition to human bone. Many scientists have studied the fabrication of HA as a biomaterial. However, applications of bulk HA compact are hindered by the low strength of HA when it is sintered. Therefore, HA has been coated on Ti or Ti alloy to facilitate good bonding between tissue and the HA surface. However, there are many problems when doing this, such as the low bonding strength between HA and Ti due to the different thermal expansion coefficients and mechanical properties. In this study, a Ti-HA composite with a porous surface was successfully fabricated by pulse current activated sintering (PCAS) and a subsequent leaching process.

심미보철용 코어재료와 베니어 세라믹 계면의 전단결합강도 비교 (Shear Bond Strength between Veneered Ceramics and Core Materials for Esthetic Restorations)

  • 김기원;박항민;정인성
    • 대한치과기공학회지
    • /
    • 제31권2호
    • /
    • pp.45-52
    • /
    • 2009
  • Esthetic restorations have been widely used in dental practice, although many studies have focused on the development and improvement of all ceramic restorations. The success of esthetic restorations depends primarily on an optimal bond strength between various veneered ceramics and core materials for esthetic restorations. The purpose of this study was to compare the shear bond strength between various veneered ceramics and core materials for esthetic restorations. 30 metal cores and 20 zirconia cores were fabricated and divided into five groups according to veneered ceramic materials such as Creation porcelain powder, Cercon Ceram Kiss, and IPS e.max ZirPress. Thirty spacimens were prepared using Creation porcelain powder, veneered 3mm height and 3mm in diameter, over the metal cores (n=10). Twenty specimens were prepared using Cercon Ceram Kiss and Zirpress, veneered 3mm height and 3mm in diameter, over the zirconia cores (n=10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 1mm/min. Ultimate shear bond strength data were analyzed with One-way ANOVA and the Scheffe's test (p=.05). Within the limits of this study, the following conclusions were drawn: The mean shear bond strengths (MPa) were: 18.44 for Uni metal VH/Creation (NCUC); 18.72 for Heraenium/Creation (NCHC); 16.23 for Wirobond C/Creation (NCWC); 13.88 for Zirconia core/$110{\mu}m$ $Al_2O_3$ sandblasting/Cercon Ceram Kiss (ZS110P); 14.61 for Zirconia core/No surface treatment/IPS e.max ZirPress (ZNTH). The mean shear bond strength for NCUC (Uni metal VH/Creation), NCHC (Heraenium/Creation) and NCWC (Wirobond C/Creation) were significantly superior to ZS110P (Zirconia core/$110{\mu}m$ $Al_2O_3$ sandblasting/Cercon Ceram Kiss) and ZNTH(Zirconia core/No surface treatment/IPS e.max ZirPress) (p<0.05).

  • PDF

Aluminum Powder Metallurgy Current Status, Recent Research and Future Directions

  • Schaffer, Graham
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2001년도 추계학술강연 및 발표대회
    • /
    • pp.7-7
    • /
    • 2001
  • The increasing interest in light weight materials coupled to the need for cost -effective processing have combined to create a significant opportunity for aluminum P/M. particularly in the automotive industry in order to reduce fuel emissions and improve fuel economy at affordable prices. Additional potential markets for Al PIM parts include hand tools. Where moving parts against gravity represents a challenge; and office machinery, where reciprocating forces are important. Aluminum PIM adds light weight, high compressibility. low sintering temperatures. easy machinability and good corrosion resistance to all advantages of conventional iron bm;ed P/rv1. Current commercial alloys are pre-mixed of either the AI-Si-Mg or AL-Cu-Mg-Si type and contain 1.5% ethylene bis-stearamide as an internal lubricant. The powder is compacted in closed dies at pressure of 200-500Mpa and sintered in nitrogen at temperatures between $580~630^{\circ}C$ in continuous muffle furnace. For some applications no further processing is required. although most applications require one or more secondary operations such as sizing and finishing. These sccondary operations improve the dimension. properties or appearance of the finished part. Aluminum is often considered difficult to sinter because of the presence of a stable surface oxide film. Removal of the oxide in iron and copper based is usually achieved through the use of reducing atmospheres. such as hydrogen or dissociated ammonia. In aluminum. this occurs in the solid st,lte through the partial reduction of the aluminum by magncsium to form spinel. This exposcs the underlying metal and facilitates sintering. It has recently been shown that < 0.2% Mg is all that is required. It is noteworthy that most aluminum pre-mixes contain at least 0.5% Mg. The sintering of aluminum alloys can be further enhanced by selective microalloying. Just 100ppm pf tin chnnges the liquid phase sintering kinetics of the 2xxx alloys to produce a tensile strength of 375Mpa. an increilse of nearly 20% over the unmodified alloy. The ductility is unnffected. A similar but different effect occurs by the addition of 100 ppm of Pb to 7xxx alloys. The lend changes the wetting characteristics of the sintering liquid which serves to increase the tensile strength to 440 Mpa. a 40% increase over unmodified aIloys. Current research is predominantly aimed at the development of metal matrix composites. which have a high specific modulus. good wear resistance and a tailorable coefficient of thermal expnnsion. By controlling particle clustering and by engineering the ceramic/matrix interface in order to enhance sintering. very attractive properties can be achicved in the ns-sintered state. I\t an ils-sintered density ilpproaching 99%. these new experimental alloys hnve a modulus of 130 Gpa and an ultimate tensile strength of 212 Mpa in the T4 temper. In contest. unreinforcecl aluminum has a modulus of just 70 Gpa.

  • PDF

고에너지 볼 밀링을 이용한 Y-산화물 분산 Fe-기초내열합금 분말의 합성 및 미세조직 특성 (Synthesis and Microstructure of Fe-Base Superalloy Powders with Y-Oxide Dispersion by High Energy Ball Milling)

  • 임다미;박종관;오승탁
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.386-390
    • /
    • 2015
  • Fe-base superalloy powders with $Y_2O_3$ dispersion were prepared by high energy ball milling, followed by spark plasma sintering for consolidation. High-purity elemental powders with different Fe powder sizes of 24 and 50 mm were used for the preparation of $Fe-20Cr-4.5Al-0.5Ti-O.5Y_2O_3$ powder mixtures (wt%). The milling process of the powders was carried out in a horizontal rotary ball mill using a stainless steel vial and balls. The milling times of 1 to 5 h by constant operation (350 rpm, ball-to-powder ratio of 30:1 in weight) or cycle operation (1300 rpm for 4 min and 900 rpm for 1 min, 15:1) were applied. Microstructural observation revealed that the crystalline size of Fe decreased with an increase in milling time by cyclic operation and was about 15 nm after 3 h, forming a FeCr alloy phase. The cyclic operation had an advantage over constant milling in that a smaller-agglomerated structure was obtained. The milled powders were sintered at $1100^{\circ}C$ for 30 min in vacuum. With an increase in milling time, the sintered specimen showed a more homogeneous microstructure. In addition, a homogenous distribution of Y-compound particles in the grain boundary was confirmed by EDX analysis.

HEMM Al-SiO2-X 복합 분말을 Al-Mg 용탕에서 자발 치환반응으로 제조된 Al-Si-X/Al2O3 복합재료의 조직 및 마멸 특성 (Microstructure Evaluation and Wear Resistance Property of Al-Si-X/Al2O3 Composite by the Displacement Reaction in Al-Mg Alloy Melt using High Energy Mechanical Milled Al-SiO2-X Composite Powder)

  • 우기도;김동건;이현범;문민석;기웅;권의표
    • 한국재료학회지
    • /
    • 제18권6호
    • /
    • pp.339-346
    • /
    • 2008
  • Single-crystal $ZnIn_2S_4$ layers were grown on a thoroughly etched semi-insulating GaAs (100) substrate at $450^{\circ}C$ with a hot wall epitaxy (HWE) system by evaporating a $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structures of the single-crystal thin films were investigated via the photoluminescence (PL) and Double-crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by Varshni's relationship, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T2/(T+489K)$. After the as-grown $ZnIn_2S_4$ single-crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin-of-point defects of the $ZnIn_2S_4$ single-crystal thin films were investigated via the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained from the PL measurements were classified as donor or acceptor types. Additionally, it was concluded that a heat treatment in an S-atmosphere converted $ZnIn_2S_4$ single crystal thin films into optical p-type films. Moreover, it was confirmed that In in $ZnIn_2S_4$/GaAs did not form a native defects, as In in $ZnIn_2S_4$ single-crystal thin films existed in the form of stable bonds.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2002년도 제3회 최신 분말제품 응용기술 Workshop
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

치과용 아말감의 파절에 관한 연구 (A STUDY ON THE FRACTURE OF DENTAL AMALGAM)

  • 허현도;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제9권1호
    • /
    • pp.101-106
    • /
    • 1983
  • It was the purpose of this study to investigate the fracture mode of dental amalgam by observing the crack propagation, and to relate this to the microstructure of the amalgam. Caulk 20th Century Regular, Caulk Spherical, Dispersalloy, and Tytin amalgam alloys were used for this study. After each amalgam alloy and Hg measured exactly by the balance was triturated by the mechanical amalgamator (Capmaster, S.S. White), the triturated mass was inserted into the cylindrical metal mold which was 4 mm in diameter and 12 mm in height and was pressed by the Instron Universal Testing Machine at the speed of 1mm/min with 120Kg. The specimen removed from the mold was stored in the room temperature for a week. This specimen was polished with the emery papers from #100 to #200 and finally on the polishing cloth with 0.06${\mu}Al_2O_3$ powder suspended in water. The specimen was placed on the Instron testing machine in the method similar to the diametral tensile test and loaded at the crosshead speed of 0.05mm/min. The load was stopped short of fracture. The cracks on the polished surface of specimen was examined with scanning electron microscope (JSM-35) and analyzed by EPMA (Electron probe microanalyzer). The following results were obtained. 1. In low copper lathe-cut amalgam, the crack went through the voids and ${\gamma}_2$ phase, through the ${\gamma}_1$ phase around the ${\gamma}$ particles. 2. In low copper spherical amalgam, it was observed that the crack passed through the ${\gamma}_2$ and ${\gamma}_1$ phase, and through the boundary between the ${\gamma}_1$ and ${\gamma}$ phase. 3. In high copper dispersant (Dispersalloy) amalgam, the crack was found to propagate at the interface between the ${\gamma}_1$ matrix and reaction ring around the dispersant (Ag-Cu) particles, and to pass through the Ag-Sn particles. 4. In high copper single composition (Tytin) amalgam, the crack went through the ${\gamma}_1$ matrix between ${\eta}$ crystals, and through the unreacted alloy particle (core).

  • PDF

EFFECTS OF SURFACE ROUGHNESS AND MULTILAYER COATING ON THE CORROSION RESISTANCE OF Ti-6Al-4V ALLOY

  • Ko, Yeong-Mu;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 추계학술발표회초록집
    • /
    • pp.134-135
    • /
    • 2003
  • The dental implant materials required good mechanical properties, such as fatigue strength, combined with a high resistance to corrosion. For increasing fatigue resistance and delaying onset of stress corrosion cracking, shot peening has been used for > 50 years to extend service life of metal components. However, there is no information on the electrochemical behavior of shot peened and hydroxyapatite(HA) coated Ti-6Al-4V alloys. To increase fatigue strength, good corrosion resistance, and biocompatibility, the electrochemical characteristics of Ti/TiN/HA coated and shot peened Ti-6Al-4V alloys by electron beam physical vapor deposition(EB-PVD) have been researched by various electrochemical method in 0.9%NaCl. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. The produced materials were quenched at 1000$^{\circ}C$ under high purity dried Ar atmosphere and were hold at 500$^{\circ}C$ for 2 hrs to achieve the fatigue strength(1140㎫) of materials. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. Shot peening(SP) and sand blasting treatment was carried out for 1, 5, and 10min. On the surface of Ti-6Al-4V alloys using the steel balls of 0.5mm and alumina sand of 40$\mu\textrm{m}$ size. Ti/TiN/HA multilayer coatings were carried out by using electron-beam deposition method(EB-PVD) as shown Fig. 1. Bulk Ti, powder TiN and hydroxyapatite were used as the source of the deposition materials. Electrons were accelerated by high voltage of 4.2kV with 80 - 120mA on the deposition materials at 350$^{\circ}C$ in 2.0 X 10-6 torr vacuum. Ti/TiN/HA multilayer coated surfaces and layers were investigated by SEM and XRD. A saturated calomel electrode as a reference electrode, and high density carbon electrode as a counter electrode, were set according to ASTM GS-87. The potentials were controlled at a scan rate of 100 mV/min. by a potentiostat (EG&G Co.273A) connected to a computer system. Electrochemical tests were used to investigate the electrochemical characteristics of Ti/TiN/HA coated and shot peened materials in 0.9% NaCl solution at 36.5$^{\circ}C$. After each electrochemical measurement, the corrosion surface of each sample was investigated by SEM.

  • PDF