• 제목/요약/키워드: Al alloy powder

검색결과 385건 처리시간 0.027초

가스분사법으로 제조된 Mg-6 wt.% Al-1 wt.% Zn 합금의 시효특성 (The Aging Characteristics of Mg-6 wt.% Al-1 wt.% Zn Alloy Prepared by Gas Atomization)

  • 이두형;김보식;장시영
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.275-279
    • /
    • 2009
  • The aging characteristics of gas atomized Mg-6 wt.% Al-1 wt.% Zn alloy were investigated and compared to those of cast Mg-6 wt.% Al alloy. The gas atomized Mg-6 wt.% Al-1wt.% Zn alloy powders had spherical morphology between 1 and 100 $\mu m$ in diameter. After compaction under the pressure of 700 MPa at $320^{\circ}C$ for 10 min, the Mg-6 wt.% Al-1 wt.% Zn alloy showed a grain size of approximately 40 $\mu m$ which is smaller than that of the cast Mg-6 wt.% Al alloy, and a relative compact density of approximately 93%. After ageing, the Mg-6 wt.% Al-1 wt.% Zn alloy showed much faster peak hardness than cast Mg-6 wt.% Al alloy. The Mg-6 wt.% Al-1 wt.% Zn alloy showed the new fine precipitations with ageing time, while the cast Mg-6 wt.% Al alloy was almost similar morphology.

구리를 함유하지 않은 친환경 자동차 브레이크 패드의 마모 특성에 관한 연구 (A Study on the Wear Properties of Cu-free Ecofriendly Vehicle Brake Pad)

  • 김기봉;양상선;이성주;황석훈;김신욱;김용진
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.30-35
    • /
    • 2018
  • The friction characteristics of Al-Fe alloy powders are investigated in order to develop an eco-friendly friction material to replace Cu fiber, a constituent of brake-pad friction materials. Irregularly shaped Al-Fe alloy powders, prepared by gas atomization, are more uniformly dispersed than conventional Cu fiber on the brake pad matrix. The wear rate of the friction material using Al-8Fe alloy powder is lower than that of the Cu fiber material. The change in friction coefficient according to the friction lap times is 7.2% for the Cu fiber, but within 3.8% for the Al-Fe alloy material, which also shows excellent judder characteristics. The Al-Fe alloy powders are uniformly distributed in the brake pad matrix and oxide films of Al and Fe are homogeneously formed at the friction interface between the disc and pad, thus exhibiting excellent friction and lubrication characteristics. The brake pad containing Al-Fe powders avoids contamination by Cu dust, which is generated during braking, by replacing the Cu fiber while maintaining the friction and lubrication performance.

Al 합금의 MIG 용접에서 WC-12%Co 분말에 첨가에 의한 경화육성층의 특성 (Characteristics of the Hard-Overlayers by WC-12%Co Powder Addition in MIG Welding of Al Alloy)

  • 박정식;양병모;박경채
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.102-107
    • /
    • 2000
  • It was attempted to improve the wear resistance of Al alloy under the load condition by making a formation of the thick surface hardening alloy layers. The thick surface hardening alloy layers were formed on 6061 Al alloys overlayed by MIG welding process with WC-12%Co powder addition. Effects of the dispersion of WE-12%Co powders on hardness and wear characteristics of alloys were investigated. The following results were obtained. Most of WE-12%Co powders are dispersed nearly uniform as unmelted particles in the matrix alloy. A part of WC-12%Co powders are melted in the molten pool, and during solidification {TEX}$Al_{9}Co_{2}${/TEX} appeared. With increasing addition of WC-12%Co powders, the hardness and specific wear resistance of the overlay weld alloys increased and reached Hv450 at WC-12%Co powder addition rate of 54g/min. It is considered that excellent wear resistance of the overlayed alloys was due to dispersed WC-12%Co powders and increased 10 times at WC-12%Co powder addition rate of 54 g/min than that of the WC-free overlaying layers.

  • PDF

$Mn_3O_4$ 분진의 Al 테르밋 반응용 Al 합금분말의 특성 (The Properties of Aluminium Alloy Powder for Aluminothermy Process with $Mn_3O_4$ Waste Dust)

  • 김윤채;송영준;박영구
    • 한국응용과학기술학회지
    • /
    • 제30권1호
    • /
    • pp.71-77
    • /
    • 2013
  • 알루미늄 테르밋 반응의 환원제로서 알루미늄 분말은 200 메쉬 이하의 미분이 필요하나, 알루미늄의 높은 인성과 분말 제조비 때문에 경제적으로 용이하지 않다. 그러므로 $Mn_3O_4$ 분진 환원용 알루미늄 미분의 제조 코스트를 낮추기 위해, 알루미늄 합금분말의 제특성이 검토되었다. 망간을 다량 함유한 알루미늄 합금괴는 취성이 큰 금속간 화합물을 함유하고 있기 때문에 쉽게 파쇄할 수 있다. 또 망간은 망간 합금철의 주성분이다. Al-15%Mn 합금분말을 기계적 파쇄법으로 저렴하게 제조할 수 있다. Al 분말 대신에 Al-15%Mn 합금분말을 사용한 테르밋 반응 결과는 환원제로 순 알루미늄 분말을 사용한 경우와 같이 고순도 망간 합금철을 얻을 수 있었다. Al-15%Mn 합금분말를 이용한 $Mn_3O_4$ 분진의 망간 회수율은 알루미늄 분말을 이용한 경우의 약 65% 보다 높은 약 70%의 높은 수준을 보였으며, 이는 비산이 적은 것에 기인한다.

급속응고 Al-20wt%Si-5wt%Fe 합금분말 압출재의 강도에 관한 연구 (Fabrication of Rapidly Solidified Al-20wt%Si-5wt%Fe Alloy Powder and Mechanical Properties of its Extrudates)

  • 김택수
    • 한국분말재료학회지
    • /
    • 제1권1호
    • /
    • pp.66-71
    • /
    • 1994
  • Optical microstructures and mechanical properties of Na gas atomized Al-20Si-5Fe alloying powder and its hot extrudates were studied on 3 different types of powder size distribution. This powder showed the size distribution of 10~210 $\mu\textrm{m}$. Also the microstructures of $\alpha$-Al, primary and eutectic Si and needle shaped intermetallic compounds were observed by optical microscope. These needle shaped intermetallic compounds were identified as ${\delta}Al_4FeSi_2$- by XRD and EDX analysis. The ultimate tensile strength(UTS) of these alloy extrudates was increased from 324 to 390 MPa with decreasing powder size range from 120~210 $\mu\textrm{m}$ to 10~64 $\mu\textrm{m}$. A value of Micro-vic-kers hardness was simillar to the result of UTS. These extrudates showed better wear resistance than those of Al-20Si-2X(X : Ni, Cr, Zr), although they are insensitive to the size distribution. These results indicate that the presentation of ${\delta}Al_4FeSi_2$ intermetallic compounds contributed to the wear resistance improvement.

  • PDF

Development of P/M Aluminum Alloy with Fine Microstructure

  • Tokuoka, Terukazu;Kaji, Toshihiko;Nishioka, Takao
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.712-713
    • /
    • 2006
  • We successfully developed Al-Si-Transition Metal (TM) -Rare Earth (RE) Powder Metallurgy (P/M) alloy with fine microstructure, which has high strength at high temperature. This material was compacted rapidly solidified powder and directly consolidated by hot extruding or forging. Before consolidating, rapid heating was performed on powder compaction in order to keep the fine microstructure in powder state. We have also investigated the processing conditions of this new alloy by computing simulations and experiments.

  • PDF

가스 분무 공정에 의해 제조된 Al-Si 합금 분말 압출재의 열처리에 의한 미세조직 및 기계적 특성 변화 (Effect of Heat Treatment on the Microstructure and Mechanical Properties for Al-Si Alloyed Powder Material by Gas Atomizing and Hot Extrusion Process)

  • 남기영;진형호;김용진;윤석영;박용호
    • 한국분말재료학회지
    • /
    • 제13권6호
    • /
    • pp.421-426
    • /
    • 2006
  • The microstructural and mechanical properties of Al-Si alloyed powder, prepared by gas atomization fallowed by hot extrusion, were studied by optical and scanning electron microscopies, hardness and wear testing. The gas atomized Al-Si alloy powder exhibited uniformly dispersed Si particles with particle size ranging from 5 to $8{\mu}m$. The hot extruded Al-Si alloy shows the average Si particle size of less than $1{\mu}m$. After heat-treatment, the average particle size was increased from 2 to $5{\mu}m$. Also, mechanical properties of extruded Al-Si alloy powder were analyzed before and after heat-treatment. As expected from the microstructural analysis, the heat-treated samples resulted in a decrease in the hardness and wear resistance due to Si particle growth. The friction coefficient of heat-treated Al-Si alloyed powder showed higher value tough all sliding speed. This behavior would be due to abrasive wear mechanism. As sliding speed increases, friction coefficient and depth and width of wear track increase. No significant changes occurred in the wear track shape with increased sliding speed.

Ti-6Al-4V 및 Ti-8Al-1Mo-1V 합금 스크랩을 이용한 저산소 분말 제조와 탈산방법 비교 (Preparation of Low Oxygen Content Powder from Ti-6Al-4V and Ti-8Al-1Mo-1V Alloy Scraps with Deoxidation in Solid State Process)

  • 오정민;서창열;권한중;임재원;노기민
    • 자원리싸이클링
    • /
    • 제24권1호
    • /
    • pp.21-27
    • /
    • 2015
  • Ti-6Al-4V 및 Ti-8Al-1Mo-1V (AMS 4972) 합금 스크랩을 대상으로 수소화-탈수소화(HDH) 기술로 분말을 제조하고 칼슘 접촉식과 비접촉식 방법으로 탈산을 실시하여 탈산효과를 비교하였다. 타이타늄을 대상으로 한 이전 연구결과에서는 비접촉식 탈산법이 탈산 효과가 더 크다고 보고되었으나 산소함유량을 분석한 결과 Ti-6Al-4V 및 Ti-8Al-1Mo-1V 합금 분말 모두 비접촉식으로 탈산한 분말의 산소함유량이 더 높은 것으로 밝혀졌다. 따라서, 본 연구에서는 XRD와 가스분석기를 이용하여 합금 내에 가장 많이 함유되어 있는 알루미늄이 비접촉식 탈산 공정 중 탈산에 미치는 영향을 조사하였다.

급속응고된 Al-Pb-Cu-Mg 합금의 마모특성에 미치는 미세조직의 영향 (Effect of the Microstructrure of Rapidly Solidified Al-Pb-Cu-Mg on the Wear ProPerty)

  • 김홍물
    • 한국분말재료학회지
    • /
    • 제7권1호
    • /
    • pp.12-18
    • /
    • 2000
  • Effects of the microstrucrure of rapidy solidified Al-Pb-Cu-Mg alloys on the wear investigated. In order to overcome the miscility gap between Al and pb under equilibrium conditions, both in the solid and the liquid states, the alloy were rapidy solidifies to produce them in a segregation-free condition. Although the Pb particles showed relatively fine dispersion in the Al matrix in all the alloys by this process. the Al-16Pb alloy was found to have the most favorable microstructure with discretre with discrete Pb particles of abount 0.5 ${\mu}$m in size. With the addition of Cu and Cu-Mg to Al-16Pb, cellular structures were newly formed; not seen in the binary Al-Pb alloy. Wear properties of the Al-Pb binary alloys measured as a function of the sliding speen, sliding distance, and applied load showed that the Al-16Pb alloy has the best wear resistance, as expected from the fine microstructural features in this alloy. The were resistance of the alloy containing Cu-and Cu-Mg was higher than that of the Al-16Pvb alloy, due to matrix strengthening by precipitation hardeing. The wear mechanism was identified by examining the traces and wear debris.

  • PDF

Al-합금의 용융산화거동에 미치는 $\textrm{SiO}_2$도판트 량의 영향 (The Effects of the Amount of $\textrm{SiO}_2$ Dopant on the Melt Oxidation Behavior of the Al-Alloy)

  • 강정윤;김일수
    • 한국재료학회지
    • /
    • 제9권6호
    • /
    • pp.609-614
    • /
    • 1999
  • The effect of the amount of $SiO_2$dopant on the behavior of $AlO_2$$O_3$-composite formation by melt oxdation of Al-alloy was examined in this paper. The $SiO_2$powder was spread on the top surface of the Al-1Mg-3-Si-5Zn-1Cu alloy in th alumina crucible. The selected amount of each powder was 0.03, 0.10, 0.16g/$\textrm{cm}^2$. The oxidation behavior was determined by observing the weight gain after the heat treatment for 10 hours at 1373K. The macroscopic structure of formed oxide layer was examined by an optical microscope. The top surface and the cross-section of the grown oxide layer were investigated by SEM and analysed by EDX. The $SiO_2$ powder was determined to enhance oxidation by thermit reaction with Al which reduced the growth incubation period of the oxidation layer. As the amount of the $SiO_2$dopant increased, the growth rate decreased due to the precipitated Si which blocked the Al-alloy channel in the composite materials. However, more uniform layer was obtained due to the occurrance of the enhanced oxidation reaction in the whole alloy surface compared to the case of addition of less amount of dopant.

  • PDF