• 제목/요약/키워드: Al Vehicle Parts

검색결과 19건 처리시간 0.027초

AlSiMg/TiC 복합 용사 피막 : 분말제조 및 피막 특성(I) (Thermal Sprayed AlSiMg/TiC Composite Coatings : Fabrication of Powder and Characteristics of Coatings (I))

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.98-104
    • /
    • 2000
  • Aluminum alloys are being employed in automobile parts as strive to reduce overall vehicle weight to meet demands for improved fuel economy and reduction in vehicle emissions. Al-based composites reinforced with ceramic ($Al_2O_3,\;SiC,\;TiC\;and\;B_4C$) applications in a variety of components in automotive engines, such as liners, where the tribological properties of the material are important. In this study, Al-base composites reinforced with TiC particle powders has been developed for producing plasma spray coatings. The composite plasma spray powders were prepared Al-13Si-3Mg(wt%) alloy with TiC(40, 60 and 80wt%) particles ($0.2~5{\mu}textrm{m}$) by drum type ball milling. The composite powders ($36~76{\mu}textrm{m}$) were sprayed with plasma torch. Plasma sprayed coatings were heat-treated at $500^{\circ}C$ for 3 hours. The wear resistances of the plasma sprayed coatings were found to decrease with increasing TiC content and improved with heat treatment. AlSiMg-40% TiC heat-treated coatings were showed the best wear resistance in this study.

  • PDF

탄소복합재 부품 파티션패널의 구조 강성/강도 신뢰성 평가에 관한 연구 (Study on Structural Reliability Assessment of a Partition Panel Made of a CFRP(Carbon Fiber Reinforced Plastic))

  • 이재진;문지훈;윤원호;강다경;안민수;노형진;강지헌;이재욱
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.68-74
    • /
    • 2019
  • In the case of a partition panel for a vehicle, it is used as a vehicle chassis component that serves to distinguish the indoor and outdoor spaces of a vehicle and is mounted on a backrest portion of the vehicle's back seat to ensure the convenience of passengers by connecting the floor and the side of the vehicle. Because it is a relatively large-sized plate material among automobile chassis parts except the moving parts and non-ferrous materials can be applied, it is considered as a part having a large light-weight effect. However, the partition panel is one of the vehicle parts that must satisfy the light-weight effect as well as various structural reliability, such as torsional rigidity, vibration, and impact characteristics, for securing the running stability of the vehicle when driving at the same time. So, In this study, the possibility of replacing the aluminum partition panel as CFRP(Carbon Fiber Reinforced Plastic) partition panel is evaluated through comparing the two partition panels by using the structural reliability(stiffness/strength analysis), vibration analysis, impact analysis.

서스펜션 암의 포트홀 다이 압출공정 유한요소 해석 (Finite Element Analysis of Porthole Extrusion Process for Al Suspension Arm)

  • 조영준;이상곤;김병민;오개희;박상우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2006
  • The growing demand for more fuel-efficient vehicles to reduce energy consumption and air pollution is a challenge for the automotive industry. The characteristic properties of aluminum, high strengrth stiffness to weight ratio, good formability, good corrosion resistence, and recycling potential make it the ideal candidate to replace heavier materials in the car to respond to the weight resuction demand within the automotive industry. In this paper, A series of compression test was carried out to find the flow stress of A6082 at 300, 400 and $500^{\circ}C$, then we tried to estimate weldability, extrusion load and effective stress of die in the aluminum extrusion process through the 3D FE simulation at non-steady state for aluminum automotive parts.

  • PDF

열간단조공법을 이용한 컨로드용 Al 합금의 개발에 관한 연구 (A Study on the Development of Al Alloy for the Vehicle Connecting Rod Using Hot Forging)

  • 김순호;황태문
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.66-71
    • /
    • 2008
  • Alumium alloys hot forging process are gaining increased acceptance in the automotive and electronic industries and hot forging is one of the most efficient manufacturing method for mass product parts. It has been investigated the microstructures and mechanical properties of Al-11.7Si-0.5Mg (KNT40-T6)alloy fabricated by hot forging process for development of connecting rod in this study. The microstructure of hot forged specimen was composed of eutectic structure of alumimum solid solution and $Mg_2Si$ precipitates. The tensile strength of solutionized Al-11.7Si-0.5Mg alloy was 217MPa. This alloy showed a good corrosion resistance using electrochemical polarization test.

  • PDF

차량 경량화를 위한 최적설계에 관한 연구 (A Study on the Optimal Design for Lightweight Vehicle Dash)

  • 이경일
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.14-20
    • /
    • 2020
  • Currently, the automotive market is intensively researching eco-friendly vehicles such as EV vehicles and hydrogen vehicles. Further, research and developments for the future markets such as autonomous vehicles and the connective cars are coped up continuously along with the rising fuel economy regulations and the emission regulations. In this development, various sensors, batteries, and control devices are fused in order to decrease the weight of the vehicle. Moreover, since the fuel economy regulation is an issue, research on the weight reduction of body parts is underway. Therefore, in this work, a study is conducted to obtain the optimal design of the Dash part that separates the engine room and the passenger seat of the vehicle body by combining lightweight materials with high rigidity materials. The optimal design was obtained using the Finite Element Analysis. Further, AL5083 was used as the lightweight material and ASBC1470 was used for high strength materials. The parts made with this combination of materials had strength equivalent to that of the existing steel and the weight was reduced by 10%.

스퀴즈 캐스팅 제조법에 의한 자동차 엔진 마운틴 브래킷 개발에 관한 연구 (A Study on the Development for the Vehicle Engine Mountion Bracket Using Squeeze Casting)

  • 김순호
    • 동력기계공학회지
    • /
    • 제7권4호
    • /
    • pp.44-48
    • /
    • 2003
  • Alumium alloys casting are gaining increased acceptance in the automotive and electronic industeries and squeeze casting is the most efficient method of manufacturing such mass produced parts. This study has been investigated the microstructures and mechanical properties of Al-7.0Si-0.4Mg(AC4C)alloy fabricated by squeeze casting process for development of Engine Mountain Bracket. The microstructure of squeeze casted specimen were composed of eutectic structure Alumimim solid solution and $Mg_2Si$ precipitates. The tensile strength of as-solid solution treatment Al-7.0Si-0.4Mg alloy revealed 2985MPa. It was found that Al-7.0Si-0.4Mg alloy have good aging hardening effect results are presented to show the validity of the control method.

  • PDF

Al 합금 수송기계부품의 5축 가공에서 머신시뮬레이션을 통한 간섭체크 및 NC 데이터 최적화 (Interference Check and NC Data Optimization through Machine Simulation in 5 Axises Machining of a Vehicle Parts of Aluminum Alloy)

  • 김해지;이인수;김남경
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.52-59
    • /
    • 2004
  • This paper shows about the machine simulation embodiment when it happens NC equipment and between workpiece and interference in 5 axises machining of aluminium alloy a vehicles parts. And this research has been chosen because of the highest equipment interference occurrence rate at a vehicles parts processing of 5 axises horizontal machine. It can verify simulation and machining process through correlation of their dynamic relations, interference, collision as embodied virtual manufacturing system of machine, workpiece, and holder etc. That is necessary element in shape of machine tool, function and processing in imagination ball. Also, it verifies about interference and collision between NC equipment and workpiece, as it applied machine simulation to NC Data of actuality aircraft parts of BULKHEAD and FRAME. As the result of this study, by removing the equipment interference and collision element which creates NC data, the virtual machine tool it the efficiency of machine process has increased.

유기용제 함침법을 통한 알루미늄 다이캐스팅의 미세결함 및 기밀성 평가 (Evaluation of Micro-defects and Air Tightness of Al Die-casting by Impregnation of Organic Solvent)

  • 이진욱;조창현;김성계;고영건;김동주
    • 한국주조공학회지
    • /
    • 제42권4호
    • /
    • pp.218-225
    • /
    • 2022
  • 본 연구에서는 고압 다이캐스팅 (High pressure die-casting, HPDC)을 통해 알루미늄 합금 (상업코드: ALDC12종)으로 수소 자동차용 부품 (Air pressure control valve housing, APCVH)을 제조하였으며 주조품의 기밀성을 향상시키기 위해 유기 함침액을 개발하였다. 개발된 2종류의 유기 함침액 (INNO-series, 한국)과 상용 합침액 (P601, 일본)을 사용하여 함침공정 조건 및 후 처리에 따른 미세결함과 기밀성을 비교 평가하였다. 컴퓨터 단층촬영 및 3차원 X-선 현미경 분석을 통해 함침된 알루미늄 주조품의 결함제어 및 성능 개선을 확인하였다. 또한, 함침 공정 후 기밀성 시험에서 INNO-01이 함침된 시료의 경우 성능 개선율이 70%인 것으로 확인하였다. 따라서, 개발된 유기 함침액은 상용 가능하며 다이캐스팅 제품의 기밀성 향상에 도움이 될 것으로 판단된다.

돔 형상의 스피닝 가공 공정에서 롤의 이송 속도와 소재의 두께감소에 대한 성형력 연구 (A Study on the Forming Load for roller feed rate and Thickness Reduction in the spinning Process of launch vehicle fuel tank dome)

  • 염성호;남경오;홍성인
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.387-390
    • /
    • 2006
  • 스피닝은 가장적은 가공력과 간단한 도구를 이용하여 소재를 변형시키는 방법중의 하나이다. 그리고 소재의 소성변형으로 인해 기계적 특성의 향상을 가져오는 공법이다. 이러한 스피닝 공법은 자동차, 항공, 군사 분야에서 중요한 부품의 생산에 적용되는 기술이다. 본 연구에서는 발사체 연료탱크의 돔형상에 스피닝 공법을 적용하여 제작함에 있어 롤러의 이송속도와 소재의 두께감소에 따른 성형력의 경향을 유한요소 해석을 이용하여 분석하였다.

  • PDF

알루미늄 판재의 성형성 향상을 위한 적외선 국부 열처리법의 곡선형태 적용에 관한 연구 (A Study on the Infrared Local Heat Treatment of Curved Line for Aluminum Alloy Sheet)

  • 이은호;양동열
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.87-92
    • /
    • 2018
  • Auto industries have tried to employ lightweight alloys to improve the fuel efficiency of manufactured vehicles, as the environmental concern becomes an important issue. Even though the aluminum alloy is one of the most appropriate lightweight alloys for auto parts, the low formability of an aluminum alloy has been an obstacle to its application. In order to resolve the low formability problem, a recent study (Lee et al., 2017 [1]) showed that the infrared (IR) local heat treatment can improve the formability with a reduction of heating energy. However, the aforementioned study was limited to only a linear line heating. Since many of the available auto parts as applicable to vehicle manufacturing have a curved line shape, the heating experiments for a curved line should be studied. The possibility of building IR lamps having complex shapes is an advantage of the IR lamp, since it can control the heating shape. This work conducted the IR local heat treatment for the curved line. The experimental results show that the IR local heat treatment can improve the formability of the aluminum alloy for curved line. Additionally, it is shown that the IR local heat treatment also reduces the heating energy when it is compared with the furnace heating which heats a blank as a whole. A numerical simulation with a stress-based forming limit diagram also supports the experimental results.