• Title/Summary/Keyword: Al Film

Search Result 2,137, Processing Time 0.027 seconds

Characteristics Comparison of Anodic Films Formed on Mg-Al Alloys by Non-chromate Surface Treatment

  • Kim, Seong-Jong;Jang, Seok-Ki;Kim, Jeong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.300-308
    • /
    • 2004
  • The formation mechanism of anodic oxide films on Mg alloys when anodized in NaOH solution. was investigated by focusing on the effects of anodizing potential. Al content. and anodizing time. Pure Mg and Mg-Al alloys were anodized for 10 min at various potentials in NaOH solutions. $Mg(OH)_2$ was generated by an active dissolution reaction at the surface. and the product was affected by temperature. The intensity ratio of $Mg(OH)_2$ in the XRD analysis decreased with increasing applied potential. while that of MgO increased. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. And the intensity ratio of $Mg_{17}Al_{12}$/Mg increased with aluminum content in Mg-Al alloys. During anodizing. the active dissolution reaction occurred preferentially in ${\beta}\;phase(Mg_{17}Al_{12})$ until about 4 mins. and then the current density increased radually until 7 mins. The dissolution reaction progressed in a phase(Mg) which not formed the intermetallic compound. which had a lower Al content. In the anodic polarization test of $0.017\;mol{\cdot}dm^-3$ NaCl and $0.1\;mol{\cdot}dm^-3\;Na_2SO_4$ at 298 K. the current density of Mg-15 mass% Al alloy anodized for 10 mins increased. since the anodic film that forms on the a phase is a non-compacted film. The anodic film on the phase for 30 mins was a compact film as compared with that for 10 mins.

Effects on the Al2O3 Thin Film by the Ar Pulse Time in the Atomic Layer Deposition (원자층 증착에 있어서 아르곤 펄스 시간이 Al2O3 박막에 미치는 효과)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.157-160
    • /
    • 2021
  • As an insulator for a thin film transistor(TFT) and an encapsulation material of organic light emitting diode(OLED), aluminum oxide (Al2O3) has been widely studied using several technologies. Especially, in spite of low deposition rate, atomic layer deposition (ALD) has been used as a process method of Al2O3 because of its low process temperature and self-limiting reaction. In the Al2O3 deposition by ALD method, Ar Purge had some crucial effects on the film properties. After reaction gas is injected as a formation of pulse, an inert argon(Ar) purge gas is injected for gas desorption. Therefore, the process parameter of Ar purge gas has an influence on the ALD deposited film quality. In this study, Al2O3 was deposited on glass substrate at a different Ar purge time and its structural characteristics were investigated and analyzed. From the results, the growth rate of Al2O3 was decreased as the Ar purge time increases. The surface roughness was also reduced with increasing Ar purge time. In order to obtain the high quality Al2O3 film, it was known that Ar purge times longer than 15 sec was necessary resulting in the self-limiting reaction.

Emission Characteristics of Encapsulated Organic Light Emitting Devices Using Attaching Film and Flat Glass (접착 필름과 평판 유리를 이용하여 봉지된 유기 발광 소자의 발광 특성)

  • Lim, Su Yong;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.3
    • /
    • pp.111-115
    • /
    • 2013
  • To study the encapsulation method for large-area organic light emitting devices (OLEDs), OLED of ITO / 2-TNATA / NPB / $Alq_3$:Rubrene / $Alq_3$ / LiF / Al structure was fabricated, which on $Alq_3$/LiF/Al as protective layer of OLED was deposited to protect the damage of OLED, and subsequently it was encapsulated using attaching film and flat glass. The current density and luminance of encapsulated OLED using attaching film and flat glass has similar characteristics compared with non-encapsulated OLED when thickness of Al as a protective layer was 1200 nm, otherwise power efficiency of encapsulated OLED was better than non-encapsulated OLED. Encapsulation process using attaching film and flat glass did not have any effects on the emission spectrum and the Commission International de L'Eclairage (CIE) coordinate. The lifetime of encapsulated OLED using attaching film and flat glass was 287 hours in 1200 nm Al thickness, which was increased according to thickness of Al protective layer, and was improved 54% compared with 186 hours in same Al thickness, lifetime of encapsulated OLED using epoxy and flat glass. As a result, it showed the improved efficiency and the long lifetime, because the encapsulation method using attaching film and flat glass could minimize the impact on OLED caused through UV hardening process in case of glass encapsulation using epoxy.

Characteristics of Hillock Formation in the Al-1%Si Film by the Effect of Ion Implantation and Substrate Temperature (이온 주입과 기판 온도 효과에 의한 Al-1%Si 박막의 Hillock 형성 특성)

  • Choi, Chang-Auk;Lee, Yong-Bong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • As packing density in integrated circuits increases, multilevel metallization process has been widely used. But hillock formed in the bottom layers of aluminum are well known to make interlayer short in multilevel metallization. In this study, the effects of ion implantation to the metal film and deposition temperature on the hillock formation were investigated. The Al-1%Si thin film of $1{\mu}m$ thickness was DC sputtered with substrate ($SiO_2/Si$) temperature of $20^{\circ}C$, $200^{\circ}C$, and $400^{\circ}C$, respectively. Ar ions ($1{\times}10^{15}cm^{-2}$: 150 keV) and B ions ($1{\times}10^{15}cm^{-2}$, 30 keV, 150 keV) were implanted to the Al-Si thin film. The deposited films were evaluated by SEM, surface profiler and resistance measuring system. As a results, Ar implanting to Al-Si film is very effective to reduce hillock size in the metal deposition temperature below than $200^{\circ}C$, and B implanting to an Al-Si film is effective to reduce hillock density in the high temperature deposition conditions around $400^{\circ}C$. Line width less than $3{\mu}m$ was free of hillock after alloying.

APPLICATION OF DISPROPORTIONATION REACTION TO SURFACE TREATMENT

  • Oki, Takeo
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.478-481
    • /
    • 1996
  • Disproportionation reaction is very important and interesting reaction to be applied to such surface treatment as metal, alloy, compound coating, a surface etching and so on. In gaseous system, the reaction of Al chloride is applied to Al and Al alloy coating, and the similar reaction of Ti chloride is also used for Ti, Ti alloy and Ti compound coating. As for aqueous system, this reaction is utilized to such metal coat as Sn etc. and metal etching such as Cu, Fe and so on. Also in molten salts system, this reaction has many application for surface treatment like metal, alloy and compound coatings for corrosion, wear, heat resistance and so forth. For instance, carbide film, nitride film, boride film, alloy film, quite new different film from the components of substrate material are coated in single and multiple component film system by the disproportionation reaction.

  • PDF

Molecular Beam Epitaxy Grouth of $\textrm{LaAlO}_3$ Thin Film by a Pulsed laser Deposition Technique (펄스레이저증착법을 이용한 $\textrm{LaAlO}_3$ 박막의 Molecular Beam Epitaxy 성장)

  • Kim, In-Seon;Heo, Nam-Hoe;Park, Yong-Gi
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 1999
  • We have developed a laser molecular beam epitaxy system for the layer-by-layer growth of oxide thin films. Using this system, we could grow and control oxide thin films of LaAlO$_3$in a molecular layer epitaxy mode on the atomically flat SrTiO$_3$ substrate with a LaAlO$_3$single crystal target. Very clear RHEED oscillations were observed during to growth of a LaAlO$_3$ film for a long period under the optimized conditions of substrate temperature at $650^{\circ}C$, oxygen pressure at 1$\times$10\ulcorner torr, and an incident laser fluence of 4.6J/$\textrm{cm}^2$. The height of mono-layer-LaAlO$_3$ film grown during one period of RHEED intensity oscillation was 3.8$\AA$.

  • PDF

A study on the properties of transparent conductive ZnO:Al films on variation substrate temperature (기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering (FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of O$_2$ gas and substrate temperature. When the of gas rate of 0.3 and substrate temperature 200$^{\circ}C$ , ZnO:Al thin film had strongly oriented c-axis and lower resistivity(<10$\^$-4/Ω-cm).

  • PDF

Characterization of $Al_2O_3$, Thin Film Deposited by Aerosol Deposition Method (에어로졸 증착법에 의한 $Al_2O_3$ 박막의 증착 및 특성 평가)

  • Cho, Hyun-Min;Kim, Hyeong-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.24-24
    • /
    • 2007
  • Aerosol deposition(AD) method is a emerging technology for the room temperature deposition of the dielectric thin films with high quality. In this study, $Al_2O_3$ thin films were deposited by aerosol deposition method directly from raw powders. To get uniform and smooth film surface, Process parameters such as gas consumption rate, nozzle-substrate distance and vibration speed were optimized. From XRD results, $Al_2O_3$ thin films have the same crystal structures with starting powders. $Al_2O_3$ thin films also showed dense microstructure. Electrical properties of the thin films were also investigated.

  • PDF

Electrical Properties of ZnO:Al Transparent Conducting Thin Films for Film-Typed Dye Sensitized Solar Cell

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.11
    • /
    • pp.36-43
    • /
    • 2008
  • In this parer aluminium-doped zinc oxide(ZnO:Al) conducting layer was deposited on polyethylene terephthalate(PET) substrate by r. f. magnetron sputtering method. The effects of gas pressure and r. f. sputtering power on the structural and electrical properties of ZnO:Al thin film were investigated experimentally. Especially the effect of position of PET substrate on the electrical properties of the film was studied and fixed to improve the electrical properties and also to increase the deposition rate. The results show that the structural and electrical properties of ZnO:Al thin film were strongly influenced by the gas pressure and sputtering power. The minimum resistivity of $1.1{\times}10^{-3}[{\Omega}-cm]$ was obtained at 5[mTorr] of gas pressure, and 18D[W] of sputtering power. The deposition rate of ZnO:Al film at 5[mTorr] of gas pressure was 248[nm/min]. and is higher by around 3 times compared to that at 25[mTorr].

Fabrication of SAW for harsh environment USN and its characteristics (극한 환경 USN용 SAW 제작과 그 특성)

  • Chung, Gwiy-Sang;Hoang, Si-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.13-16
    • /
    • 2009
  • In this study, AlN thin films were deposited on a polycrystalline (poly) 3C-SiC buffer layer for surface acoustic wave (SAW) applications using a pulsed reactive magnetron sputtering system. AFM, XRD and FT-IR were used to analyze structural properties and preferred orientation of the AlN/3C-SiC thin film. Suitability of the film in SAW applications was investigated by comparing the SAW characteristics of an interdigital transducer (IDT)/AlN/3C-SiC structure with the IDT/AIN/Si structure at 160 MHz in the temperature range $30-150^{\circ}C$. These experimental results showed that AlN films on the poly 3C-SiC layer were highly (002) oriented. Furthermore, the film showed improved temperature stability for the SAW device, $TCF\;=\;-18\;ppm//^{\circ}C$. The change in resonance frequency according to temperature was nearly linear. The insertion loss decrease was about $0.033dB/^{\circ}C$. However, some defects existed in the film, which caused a slight reduction in SAW velocity.

  • PDF