• Title/Summary/Keyword: Al:ZnO

Search Result 1,170, Processing Time 0.062 seconds

Chemically Induced Grain Boundary Migration of MgAl2O4 by ZnO (ZnO의 화학구동력에 의한 $MgAl_2O_4$의 입계이동)

  • Choi, Kyoon;Cho, Eu-Seong;Kang, Suk-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.888-892
    • /
    • 1992
  • The chemically induced grain-boundary migration has been studied in MgAl2O4 spinel under ZnO atmosphere. MgAl2O4 compacts been prepared by sintering powder mixture of Al2O3 and MgO at 1$600^{\circ}C$ for 60 h in air. The sintered MgAl2O4 has been heat-treated at 150$0^{\circ}C$ in a ZnO atmosphere. During the heat-treatment grain boundaries have become curved or faceted, and the total area of grain boundaries have increased. In the migrated region, the ZnO content is higher by 6 wt% than that in other regions, indicating that the migration was induced by addition of ZnO. In some shrinking grains, the faceted planes of different grain boundaries for the same grain are parallel to each other. This result provide an experimental support for the coherency strain energy in diffusion layer of the shrinking grain as being the major driving force. Calculated coherency strain energy of MgAl2O4 shows the maximum at {111} planes and the minimum at {100} planes. Although the minimum surface energy is at {111} planes, the faceted moving boundaries are expected to be {100} planes because of lowest driving force for the grain-boundary migration.

  • PDF

Effect of ZnO buffer layer on the property of ZnO thin film on $Al_{2}O_{3}$ substrate (사파이어 기판 위에 증착된 ZnO 박막 특성에 대한 ZnO 버퍼층의 영향)

  • Kim, Jae-Won;Kang, Jeong-Seok;Kang, Hong-Seong;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.140-142
    • /
    • 2003
  • ZnO thin films are demanded for device applications, so ZnO buffer layer was used to improve for good properties of ZnO thin film. In this study, the structural, electrical and optical properties of ZnO thin films deposited with various buffer thickness was investigated by X-ray diffraction (XRD), Hall measurements, Photoluminescence(PL). ZnO buffer layer and ZnO thin films on sapphire($Al_{2}O_{3}$) substrate have been deposited $200^{\circ}C$ and $400^{\circ}C$ respectively by pulsed laser deposition. It is observed the variety of lattice constant of ZnO thin film by (101) peak position shift with various buffer thickness. It is founded that ZnO thin film with buffer thickness of 20 nm was larger resistivity of 200 factor and UV/visible of 2.5 factor than that of ZnO thin films without buffer layer. ZnO thin films with buffer thickness of 20 nm have shown the most properties.

  • PDF

Effect of Substrate Bias Voltage on the Electrical Properties of ZnO:Al Transparent Conducting Film Deposited on Organic Substrate (유기물 기판 위에 증착된 ZnO:Al 투명전도막의 전기적 특성에 미치는 기판 바이어스 전압의 효과)

  • Kwak, Dong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.78-84
    • /
    • 2009
  • In this paper, ZnO:Al thin film was deposited on polyethylene terephthalate(PET) substrate by capacitively coupled r. f. magnetron sputtering method from a ZnO target mixed with 2wt[%] Al2O3 to investigate the possible application of ZnO:Al film as a transparent conducting electrode for film typed DSCs. The effect of substrate bias on the electrical properties and film structure were studied. The results showed that a positive bias applied to the substrate during sputtering contributed to an improvement of electrical properties of the film by attracting electrons in the plasma to bombard the growing films. These bombardments provided additional energy to the growing ZnO:Al film on the substrate, resulting in significant variations in film structure and electrical properties. Electrical resistivity of the film decreases significantly as the positive bias increases up to +30[V] However, as the positive bias increases over +30[V], the resistivity decreases. The transmittance varies little as the substrate bias is increased from 0 to +60[V], and as r. f. powers increases from 160[W] to 240[W]. The film with electrical resistivity as low as $1.8{\times}10^{-3}[{\Omega}-cm]$ and optical transmittance of about 87.8[%] were obtained for 1,012[nm] thick film deposited with a substrate bias of +30[V].

Growth and Optical Properties for ZnO Thin Film by Pulesd Laser Deposition (펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 광학적 특성)

  • 홍광준;김재열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.233-244
    • /
    • 2004
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_2O_3$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_2O_3$)substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}10^{16}\;cm^{-3}$ and $299\;{\textrm}cm^2/V.s$ at 293K. respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;3.3973\;eV\;-\;(2.69{\times}10^{-4}\;eV/K)T^2/(T+463K)$. After the as-grown ZnO epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO atmospheres has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{zn},\;Vo,\;Zn_{int},\;and\;O_{int}$ obtained by PL measurements were classified as a donors or acceptors type. In addition, we concluded that the heat-treatment in the oxygen atmosphere converted ZnO thin films to an optical p-type. Also, we confirmed that vacuum in $ZnO/Al_2O_3$ did not form the native defects because vacuum in ZnO thin films existed in the form of stable bonds.

  • PDF

A Study on the Electrical and Optical Properties of Transparent Conductive ZnO:Al Films on Variation of Film Thickness (막 두께에 따른 ZnO:Al 투명 전도막의 전기적, 광학적 특성)

  • Yang, J.S.;Park, W.H.;Kim, Y.J.;Seong, H.Y.;Keum, M.J.;Son, I.H.;Shin, S.K.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.171-173
    • /
    • 2001
  • ZnO:Al transparent conductive thin films were prepared by facing targets sputtering system with a DC power supply using ZnO target containing 2wt% of $Al_2O_3$ and Zn metal target. Sputtering was carried out at substrate temperature of R.T. and $200^{\circ}C$ with a DC current of 0.6A, $O_2$ flow rate of $0.1{\sim}0.5$ and thickness $300{\sim}900nm$. ZnO:Al films showed a resistivity as low as $10^{-4}{\Omega}-cm$ and a transmittance above 85 % at wavelength 300 and 800nm.

  • PDF

Electrical Properties of P-ZnO:(Al,N) Co-doped ZnO Films Fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie;Kim, Deok-Kyu;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.442-443
    • /
    • 2007
  • Al-N co-doped ZnO films were fabricated on n-Si (100) and homo-buffer layers in the mixture of oxygen and nitrogen at $450^{\circ}C$ by magnetron sputtering. Target was ZnO ceramic mixed with $2wt%Al_2O_3$. XRD spectra show that as-grown and $600^{\circ}C$ annealed films are prolonged along crystal c-axis. However they are not prolonged in (001) plane vertical to c-axix. The films annealed at $800^{\circ}C$ are not prolonged in any directions. Codoping makes ZnO films unidirectional variation. XPS show that Al content hardly varies and N escapes with increasing annealing temperature from $600^{\circ}C\;to\;800^{\circ}C$. The electric properties of as-grown films were tested by Hall Effect with Van der Pauw configuration show some of them to be p-type conduction.

  • PDF

Electrical and Optical Properties of ZnO : Al Films Prepared by the DC Magnetron Sputtering System (직류 Magnetron Sputter 법으로 제막된 ZnO : Al 박막의 전기광학 특성)

  • 김의수;유세웅;유병석;이정훈
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.799-808
    • /
    • 1995
  • Transparent conductive films of aluminium doped zinc oxide (AZO) have been prepared by using the DC magnetron sputtering with the ZnO : Al (Al2O3 2 wt%) oxide target oriented to c-axis. Electrical and optical properties depended upon the O2/Ar gas ratio. The optical transmittance and sheet resistance of the AZO coated glass was 60~65% and 75Ω/$\square$, respectively at the O2/Ar gas ratio of 0. With the increase of the oxygen partial pressure to 2.0$\times$10-2, they were increased to the values of 81% and 1kΩ/$\square$, respectively. The films with the resistivities of 1.2~1.4$\times$10-3 Ω.cm, mobilities of 11~13 $\textrm{cm}^2$/V.sec and carrier concentrations of 3.5$\times$1020~4.0$\times$1020/㎤ were produced at the optimum O2/Ar gas ratio, which was 0.5$\times$10-2~1.0$\times$10-2. According to XRD analysis, the films have only one peak corresponding to the (002) plane, which indicates that there is a strong preferred orientation of the films. The grain size of ZnO films were calculated to 200~320 $\AA$, which was increased with the O2/Ar gas ratio and Ar gas flowrate.

  • PDF

Optical and structural properties of Al-doped CdZnO thin films with different Al concentrations (Al 도핑 농도에 따른 Al-doped Cd0.5Zn0.5O 박막의 광학적·구조적 특성)

  • Park, Hyeong-Gil;Nam, Gi-Ung;Yun, Hyeon-Sik;Kim, So-A-Ram;Kim, Min-Su;Im, Jae-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.245-246
    • /
    • 2012
  • Al 농도를 0 부터 2 at.% 까지 조절하여 도핑된 $Cd_{0.5}Zn_{0.5}O$ 박막을 석영 기판 위에 성장하였다. Al 도핑된 $Cd_{0.5}Zn_{0.5}O$ 박막의 구조적, 광학적 특성을 조사하기 위해 field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), 그리고 ultraviolet-visible (UV) spectroscopy을 사용하였다. 광학적 밴드갭은 Al 도핑 농도가 증가함에 따라 2.874 (0 at.%), 2.874 (0.5 at.%), 3.029 (1.0 at.%), 3.038 (1.5 at.%), 3.081 eV (2.0 at.%)로 증가하였다. Urbach energy는 도핑 농도에 따라 각각 464 (0 at.%), 585 (0.5 at.%), 571 (1.0 at.%), 600 (1.5 at.%), 470 meV (2.0 at.%)이었다. 또한, Al 농도가 증가함에 따라 $Cd_{0.5}Zn_{0.5}O$ 박막의 표면, 구조적 및 광학적 특성이 크게 변화되었다.

  • PDF

Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 System Glass for AlN Substrate (Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 계 유리가 적용된 질화알루미늄 기판용 RuO2계 친환경 후막저항의 전기적 특성 연구)

  • Kim, Min-Sik;Kim, Hyeong-Jun;Kim, Hyung-Tae;Kim, Dong-Jin;Kim, Young-Do;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.467-473
    • /
    • 2010
  • The objective of this study is to prepare lead-free thick film resistor (TFR) paste compatible with AlN substrate for hybrid microelectronics. For this purpose, CaO-ZnO-$B_2O_3-Al_2O_3-SiO_2$ glass system was chosen as a sintering aid of $RuO_2$. The effects of the weight ratio of CaO to ZnO in glass composition, the glass content and the sintering temperature on the electrical properties of TFR were investigated. $RuO_2$ as a conductive and glass powder were dispersed in an organic binder to obtain printable paste and then thick-film was formed by screen printing, followed by sintering at the range between $750^{\circ}C$ and $900^{\circ}C$ for 10 min with a heating rate of $50^{\circ}C$/min in an ambient atmosphere. The addition of ZnO to glass composition and sintering at higher temperature resulted in increasing sheet resistance and decreasing temperature coefficient of resistance. Using $RuO_2$-based resistor paste containing 40 wt%glass of CaO-20.5%ZnO-25%$B_2O_3$-7%$Al_2O_3$-15%$SiO_2$ composition, it is possible to produce thick film resistor on AlN substrate with sheet resistance of $10.6\Omega/\spuare$ and the temperature coefficient of resistance of 702ppm/$^{\circ}C$ after sintering at $850^{\circ}C$.

Protective Metal Oxide Coatings on Zinc-sulfide-based Phosphors and their Cathodoluminescence Properties

  • Oh, Sung-Il;Lee, Hyo-Sung;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3723-3729
    • /
    • 2010
  • We investigated the high-excitation voltage cathodoluminescence (CL) performance of blue light-emitting (ZnS:Ag,Al,Cl) and green light-emitting (ZnS:Cu,Al) phosphors coated with metal oxides ($SiO_2$, $Al_2O_3$, and MgO). Hydrolysis of the metal oxide precursors tetraethoxysilane, aluminum isopropoxide, and magnesium nitrate, with subsequent heat annealing at $400^{\circ}C$, produced $SiO_2$ nanoparticles, an $Al_2O_3$ thin film, and MgO scale-type film, respectively, on the surface of the phosphors. Effects of the phosphor surface coatings on CL intensities and aging behavior of the phosphors were assessed using an accelerating voltage of 12 kV. The MgO thick film coverage exhibited less reduction in initial CL intensity and was most effective in improving aging degradation. Phosphors treated with a low concentration of magnesium nitrate maintained their initial CL intensities without aging degradation for 2000 s. In contrast, the $SiO_2$ and the $Al_2O_3$ coverages were ineffective in improving aging degradation.