• 제목/요약/키워드: Akt Signaling Pathway

검색결과 335건 처리시간 0.032초

Long non-coding RNA T-cell leukemia/lymphoma 6 serves as a sponge for miR-21 modulating the cell proliferation of retinoblastoma through PTEN

  • Tao, Sisi;Wang, Weidong;Liu, Pengfei;Wang, Hua;Chen, Weirong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권6호
    • /
    • pp.449-458
    • /
    • 2019
  • Retinoblastoma (Rb) is one of the most common eye malignancies occur in childhood. The crucial roles of non-coding RNAs, particularly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been widely reported in Rb progression. In the present study, we found the expression of lncRNA T-cell leukemia/lymphoma 6 (TCL6) was significantly downregulated in Rb tissues and cell lines. Knockdown of lncRNA TCL6 promoted cell proliferation while reduced cell apoptosis in Rb cells. Moreover, lncRNA TCL6 serves as a sponge for miR-21, a previously-reported oncogenic miRNA in Rb, by direct targeting to negatively regulated miR-21 expression, therefore modulating Rb proliferation through miR-21. TCL6 overexpression inhibited Rb cell proliferation while miR-21 overexpression exerted an opposing effect; the effect of TCL6 overexpression was partially attenuated by miR-21 overexpression. PTEN/PI3K/AKT signaling pathway was involved in lncRNA TCL6/miR-21 axis modulating Rb cell proliferation. Taken together, lncRNA TCL6 serves as a tumor suppressor by acting as a sponge for miR-21 to counteract miR-21-mediated PTEN repression.

와송이 인간 백혈병 세포주 THP-1에서 NF-κB 활성 억제와 p38 활성을 통해 세포사멸과 자가포식에 미치는 영향 (Effect of Orostachys japonicus on Apoptosis and Autophagy in Human monocytic leukemia Cell line THP-1 via Inhibition of NF-κB and Phosphorylation of p38 MAPK)

  • 주성희;장은경;김영철
    • 대한한의학회지
    • /
    • 제40권2호
    • /
    • pp.35-50
    • /
    • 2019
  • Objectives: Orostachys japonicas (O. japonicus) has been known for its anti-tumor effect. In the present study, it was investigated whether O. japonicus EtOH extracts could induce apoptosis and autophagy which are part of the main mechanism related to anti-tumor effect in THP-1 cells. Methods: Cells were treated with various concentrations of O. japonicus EtOH extracts ($0-300{\mu}g/ml$) for 24, 48, and 72h. Cell viability was evaluated by MTS/PMS assay and apoptosis rate was examined by flow cytometry and ELISA assay. The mRNA expression of apoptosis-related genes (Bcl-2, Mcl-1, Survivin, Bax) and autophagy-related gene (mTOR) was evaluated using real-time PCR. The protein expression of Caspase-3, Akt, LC3 II, Beclin-1, Atg5, $NF-{\kappa}B$, p38, ERK was evaluated using western blot analysis. Results: O. japonicus EtOH extracts inhibited cell proliferation and apoptosis rate was increased in both flow cytometry and ELISA assay. Bcl-2, Mcl-1, Survivin (anti-apoptosis factors) mRNA expressions were decreased and Bax (pro-apoptosis factor) mRNA level was increased. mTOR mRNA expressions was decreased and LC3 II protein expressions was increased. Activation of $NF-{\kappa}B$ was decreased and phosphorylation of p38 was increased. Conclusion: O. japonicus is regarded to inhibit cell proliferation, to induce apoptosis and to regulate autophagy-related genes in THP-1 cells via $NF-{\kappa}B$ and p38 MAPK signaling pathway. This suggests O. japonicus could be an effective herb in treating acute myeloid leukemia.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

Expression of HYOU1 via Reciprocal Crosstalk between NSCLC Cells and HUVECs Control Cancer Progression and Chemoresistance in Tumor Spheroids

  • Lee, Minji;Song, Yeonhwa;Choi, Inhee;Lee, Su-Yeon;Kim, Sanghwa;Kim, Se-Hyuk;Kim, Jiho;Seo, Haeng Ran
    • Molecules and Cells
    • /
    • 제44권1호
    • /
    • pp.50-62
    • /
    • 2021
  • Among all cancer types, lung cancer ranks highest worldwide in terms of both incidence and mortality. The crosstalk between lung cancer cells and their tumor microenvironment (TME) has begun to emerge as the "Achilles heel" of the disease and thus constitutes an attractive target for anticancer therapy. We previously revealed that crosstalk between lung cancer cells and endothelial cells (ECs) induces chemoresistance in multicellular tumor spheroids (MCTSs). In this study, we demonstrated that factors secreted in response to crosstalk between ECs and lung cancer cells play pivotal roles in the development of chemoresistance in lung cancer spheroids. We subsequently determined that the expression of hypoxia up-regulated protein 1 (HYOU1) in lung cancer spheroids was increased by factors secreted in response to crosstalk between ECs and lung cancer cells. Direct interaction between lung cancer cells and ECs also caused an elevation in the expression of HYOU1 in MCTSs. Inhibition of HYOU1 expression not only suppressed stemness and malignancy, but also facilitated apoptosis and chemosensitivity in lung cancer MCTSs. Inhibition of HYOU1 expression also significantly increased the expression of interferon signaling components in lung cancer cells. Moreover, the activation of the PI3K/AKT/mTOR pathway was involved in the HYOU1-induced aggression of lung cancer cells. Taken together, our results identify HYOU1, which is induced in response to crosstalk between ECs and lung cancer cells within the TME, as a potential therapeutic target for combating the aggressive behavior of cancer cells.

Helicobacter pylori-Induced Progranulin Promotes the Progression of the Gastric Epithelial Cell Cycle by Regulating CDK4

  • Ren, Zongjiao;Li, Jiayi;Du, Xianhong;Shi, Wenjing;Guan, Fulai;Wang, Xiaochen;Wang, Linjing;Wang, Hongyan
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.844-854
    • /
    • 2022
  • Helicobacter pylori, a group 1 carcinogen, colonizes the stomach and affects the development of stomach diseases. Progranulin (PGRN) is an autocrine growth factor that regulates multiple cellular processes and plays a tumorigenic role in many tissues. Nevertheless, the mechanism of action of PGRN in gastric cancer caused by H. pylori infection remains unclear. Here, we investigated the role of PGRN in cell cycle progression and the cell proliferation induced by H. pylori infection. We found that the increased PGRN was positively associated with CDK4 expression in gastric cancer tissue. PGRN was upregulated by H. pylori infection, thereby promoting cell proliferation, and that enhanced level of proliferation was reduced by PGRN inhibitor. CDK4, a target gene of PGRN, is a cyclin-dependent kinase that binds to cyclin D to promote cell cycle progression, which was upregulated by H. pylori infection. We also showed that knockdown of CDK4 reduced the higher cell cycle progression caused by upregulated PGRN. Moreover, when the PI3K/Akt signaling pathway (which is promoted by PGRN) was blocked, the upregulation of CDK4 mediated by PGRN was reduced. These results reveal the potential mechanism by which PGRN plays a major role through CDK4 in the pathological mechanism of H. pylori infection.

Comparative co-expression analysis of RNA-Seq transcriptome revealing key genes, miRNA and transcription factor in distinct metabolic pathways in diabetic nerve, eye, and kidney disease

  • Asmy, Veerankutty Subaida Shafna;Natarajan, Jeyakumar
    • Genomics & Informatics
    • /
    • 제20권3호
    • /
    • pp.26.1-26.19
    • /
    • 2022
  • Diabetes and its related complications are associated with long term damage and failure of various organ systems. The microvascular complications of diabetes considered in this study are diabetic retinopathy, diabetic neuropathy, and diabetic nephropathy. The aim is to identify the weighted co-expressed and differentially expressed genes (DEGs), major pathways, and their miRNA, transcription factors (TFs) and drugs interacting in all the three conditions. The primary goal is to identify vital DEGs in all the three conditions. The overlapped five genes (AKT1, NFKB1, MAPK3, PDPK1, and TNF) from the DEGs and the co-expressed genes were defined as key genes, which differentially expressed in all the three cases. Then the protein-protein interaction network and gene set linkage analysis (GSLA) of key genes was performed. GSLA, gene ontology, and pathway enrichment analysis of the key genes elucidates nine major pathways in diabetes. Subsequently, we constructed the miRNA-gene and transcription factor-gene regulatory network of the five gene of interest in the nine major pathways were studied. hsa-mir-34a-5p, a major miRNA that interacted with all the five genes. RELA, FOXO3, PDX1, and SREBF1 were the TFs interacting with the major five gene of interest. Finally, drug-gene interaction network elucidates five potential drugs to treat the genes of interest. This research reveals biomarker genes, miRNA, TFs, and therapeutic drugs in the key signaling pathways, which may help us, understand the processes of all three secondary microvascular problems and aid in disease detection and management.

Aster tataricus 물 추출물의 mitogen-activated protein kinase 신호 전달 경로를 통한 면역 조절 효과 (Immunomodulatory effect of the water extract of Aster tataricus through mitogen-activated protein kinase signaling pathway)

  • 이채연;박효성;공덕훈;김영관;조화정
    • Journal of Nutrition and Health
    • /
    • 제53권5호
    • /
    • pp.452-463
    • /
    • 2020
  • 본 연구는 AT의 뿌리를 제외한 전체 AT의 에탄올 및 물 추출물의 면역 조절 효과를 비교하고 THP-1의 cytokine 분비를 조절하는 분자 메커니즘을 조사하였다. AT의 물 추출물 및 에탄올 추출물은 THP-1 세포에 독성이 없으며 세포 증식을 증가키는 것을 확인하였다. 에탄올 추출물은 영향이 없는데 반해, 물 추출물은 THP-1의 IL-1β의 분비를 증가시켰으며 COX-2 및 iNOS 단백질의 발현을 증가시켰다. 또한, MAPK 및 Akt의 인산화와 IkBα의 분해를 유도하는 것을 확인하였다. AT에 의한 IL-1β 분비는 ERK 및 JNK 억제제에 의해 감소되었으며, TNF-α의 분비는 ERK, p38 MAPK 및 JNK 억제제에 의해 감소되었다. 흥미롭게도, p38 MAPK 억제제는 AT에 의한 IL-1β의 생성을 추가로 증가시켰다. 이 결과는 AT 지상부의 물 추출물에 MAPK 신호 전달 경로를 통해 면역 세포를 자극하여 cytokine의 생산을 유도하는 생리활성물질이 존재한다는 것을 의미한다. 따라서, AT 지상부는 면역력 강화제의 천연 소재로써 이용될 수 있을 것으로 사료된다.

Dexamethasone Interferes with Autophagy and Affects Cell Survival in Irradiated Malignant Glioma Cells

  • Komakech, Alfred;Im, Ji-Hye;Gwak, Ho-Shin;Lee, Kyue-Yim;Kim, Jong Heon;Yoo, Byong Chul;Cheong, Heesun;Park, Jong Bae;Kwon, Ji Woong;Shin, Sang Hoon;Yoo, Heon
    • Journal of Korean Neurosurgical Society
    • /
    • 제63권5호
    • /
    • pp.566-578
    • /
    • 2020
  • Objective : Radiation is known to induce autophagy in malignant glioma cells whether it is cytocidal or cytoprotective. Dexamethasone is frequently used to reduce tumor-associated brain edema, especially during radiation therapy. The purpose of the study was to determine whether and how dexamethasone affects autophagy in irradiated malignant glioma cells and to identify possible intervening molecular pathways. Methods : We prepared p53 mutant U373 and LN229 glioma cell lines, which varied by phosphatase and tensin homolog (PTEN) mutational status and were used to make U373 stable transfected cells expressing GFP-LC3 protein. After performing cell survival assay after irradiation, the IC50 radiation dose was determined. Dexamethasone dose (10 μM) was determined from the literature and added to the glioma cells 24 hours before the irradiation. The effect of adding dexamethasone was evaluated by cell survival assay or clonogenic assay and cell cycle analysis. Measurement of autophagy was visualized by western blot of LC3-I/LC3-II and quantified by the GFP-LC3 punctuated pattern under fluorescence microscopy and acridine orange staining for acidic vesicle organelles by flow cytometry. Results : Dexamethasone increased cell survival in both U373 and LN229 cells after irradiation. It interfered with autophagy after irradiation differently depending on the PTEN mutational status : the autophagy decreased in U373 (PTEN-mutated) cells but increased in LN229 (PTEN wild-type) cells. Inhibition of protein kinase B (AKT) phosphorylation after irradiation by LY294002 reversed the dexamethasone-induced decrease of autophagy and cell death in U373 cells but provoked no effect on both autophagy and cell survival in LN229 cells. After ATG5 knockdown, radiation-induced autophagy decreased and the effect of dexamethasone also diminished in both cell lines. The diminished autophagy resulted in a partial reversal of dexamethasone protection from cell death after irradiation in U373 cells; however, no significant change was observed in surviving fraction LN229 cells. Conclusion : Dexamethasone increased cell survival in p53 mutated malignant glioma cells and increased autophagy in PTEN-mutant malignant glioma cell but not in PTEN-wildtype cell. The difference of autophagy response could be mediated though the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling pathway.

모링가 뿌리 추출물에 대한 신장섬유화 억제 효과 (Anti-Fibrotic Effects by Moringa Root Extract in Rat Kidney Fibroblast)

  • 박수현;장영채
    • 생명과학회지
    • /
    • 제22권10호
    • /
    • pp.1371-1377
    • /
    • 2012
  • 신장섬유화는 내 외부적인 요인들에 의해 발생하며, 그 요인들에 의해 염증이 생기고 지속적인 손상이 일어날 경우 신기능의 상실이 유발된다. 또한 신장섬유화는 세포 외 기질의 과다축적, TGF-${\beta}$나, TNF-${\alpha}$, IL-1과 같은 사이 토카인에 의해 발생하며, TGF-${\beta}$는 신장 섬유화의 과정과 Type I collagen과 fibronectin, PAI-1을 포함한 섬유화 관련 인자들의 발현 유도에 중요한 역할을 한다. 본 연구에서는 TGF-${\beta}$를 처리한 신장섬유화 유도 모델에서 Moringa oleifera Lam 추출물에 대한 섬유화 관련 인자들의 영향을 확인하였다. 실험 결과 TGF-${\beta}$로 유도된 신장 섬유화 세포에서 모링가 추출물이 fibronectin, Type I collagen과 PAI-1의 단백질 및 mRNA 발현을 저해하였으며, 모링가 추출물 중 모링가 뿌리추출물이 가장 영향이 있는 것으로 확인 되었다. 모링가 뿌리추출물이 어떠한 기전을 통하여 섬유화 관련 인자들의 발현을 조절하는지 알아보기 위한 TGF-${\beta}$로 유도된 $T{\beta}RII$ 및 그 하위 기전의 인산화 정도를 확인한 실험에서 모링가 뿌리추출물이 TGF-${\beta}$로 유도된 $T{\beta}RII$과 그 하위기전의 Smad4, ERK의 인산화를 저해하였다. 그러나 TGF-${\beta}$에 의해 유도된 JNK와 p38, PI3K/AKT의 인산화에는 영향이 없었다. 따라서 모링가 뿌리추출물이 TGF-${\beta}$로 유도된 신장 섬유아세포에서 $T{\beta}RII$와 그 하위 기전인 Smad4, ERK를 통해서 Type I collagen 과 fibronectin, PAI-1의 발현을 조절하여 섬유화를 저해 한다는 것을 예상할 수 있다. 결론적으로 모링가 뿌리추출물이 섬유화 치료 및 완화에 좋은 물질이 될 수 있을 것으로 생각된다.

SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과 (Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells)

  • 장미경;고희철;김세재
    • 생명과학회지
    • /
    • 제29권7호
    • /
    • pp.809-816
    • /
    • 2019
  • p-Coumaric acid (p-CA)는 항산화 및 항염 활성을 가진 식물계에서 가장 풍부한 식물화학물질이다. 그러나 위암세주포에서 p-CA의 항암 활성과 전사체 발현에 대한 연구는 아직까지 수행된 바 없다. 본 연구에서는 SNU-16 위암세포에서 p-CA에 의한 세포 증식 억제 및 전사체 프로파일에 미치는 영향을 조사하였다. p-CA는 세포사멸 단백질 발현을 조절하여 SNU-16 세포에서의 세포사멸을 유도하였다. RNA-seq 분석을 사용하여 p-CA처리에 의해 SNU-16 세포에서 차별적으로 발현된 유전자(DEGs)를 동정하였다. DEGs들의 gene ontology (GO) 술어로 유전자 산물을 검색한 결과, 주로 염증반응, 세포사멸 과정, 세포주기 및 면역 반응에 관여하는 생물학적 과정에 관여하는 것으로 나타났다. 또한, KEGG 경로분석 결과, p-CA는 주로 PI3K-Akt 와 암 신호전달 경로에 변화를 유발하였다. 본 연구결과는 p-CA가 세포증식과 암 신호 전달 경로에 관여하는 유전자 발현을 조절함으로써 위암 예방 효과를 나타낼 수 있음을 시사한다.