• 제목/요약/키워드: Akaike Information Criterion

검색결과 117건 처리시간 0.031초

주택가격이 센서스에 기반한 박탈지수의 대안이 될 수 있는가?: 다수준 모델에 기반한 평가 (Can Housing Prices Be an Alternative to a Census-based Deprivation Index? An Evaluation Based on Multilevel Modeling)

  • 손철;나카야 토모키
    • 지적과 국토정보
    • /
    • 제48권2호
    • /
    • pp.197-211
    • /
    • 2018
  • 본 연구에서는 건강에 대한 공간적 연구에서 통상적으로 사용되는 센서스에 기반한 지역 박탈지수의 대안으로 지역 주택가격이 사용될 수 있는지 평가하였다. 평가를 위해 개인을 1수준으로, 수도권의 보건소 구역을 2수준으로 하는 다수준 로지스틱 모델이 추정되었다. 다수준 모델에는 개인의 점심식사후 칫솔질과 치간실 사용을 설명하기 위한 개인수준의 변수들과 보건소 구역을 대표하는 사회적 박탈지수 및 지역주택가격 수준이 포함되었다. 추정된 모델들의 설명력은 Akaike Information Criterion (AIC)와 Bayesian Information Criterion (BIC)를 이용하여 평가되었다. 모델의 추정결과는 사회적 박탈지수 및 지역 주택가격이 모두 개인의 치아관리 행동을 설명하는 데 기여하나 지역 주택가격을 사용한 모델의 AIC 및 BIC가 통상적인 센서스 기반 지역 박탈지수를 사용한 경우 보다 낮은 것을 보여 주었다. 본 연구결과는 센서스에 기반한 박탈지수를 생성하는 데 사용된 센서스 변수가 시점의 차이 등의 이유로 적절하지 않을 경우 지역 주택가격이 지역의 사회경제적 수준을 대표하기 위해 대안적으로 사용될 수 있음을 보여준다.

Comparison between Parametric and Semi-parametric Cox Models in Modeling Transition Rates of a Multi-state Model: Application in Patients with Gastric Cancer Undergoing Surgery at the Iran Cancer Institute

  • Zare, Ali;Mahmoodi, Mahmood;Mohammad, Kazem;Zeraati, Hojjat;Hosseini, Mostafa;Naieni, Kourosh Holakouie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6751-6755
    • /
    • 2013
  • Background: Research on cancers with a high rate of mortality such as those occurring in the stomach requires using models which can provide a closer examination of disease processes and provide researchers with more accurate data. Various models have been designed based on this issue and the present study aimed at evaluating such models. Materials and Methods: Data from 330 patients with gastric cancer undergoing surgery at Iran Cancer Institute from 1995 to 1999 were analyzed. Cox-Snell Residuals and Akaike Information Criterion were used to compare parametric and semi-parametric Cox models in modeling transition rates among different states of a multi-state model. R 2.15.1 software was used for all data analyses. Results: Analysis of Cox-Snell Residuals and Akaike Information Criterion for all probable transitions among different states revealed that parametric models represented a better fitness. Log-logistic, Gompertz and Log-normal models were good choices for modeling transition rate for relapse hazard (state $1{\rightarrow}state$ 2), death hazard without a relapse (state $1{\rightarrow}state$ 3) and death hazard with a relapse (state $2{\rightarrow}state$ 3), respectively. Conclusions: Although the semi-parametric Cox model is often used by most cancer researchers in modeling transition rates of multistate models, parametric models in similar situations- as they do not need proportional hazards assumption and consider a specific statistical distribution for time to occurrence of next state in case this assumption is not made - are more credible alternatives.

임의효과를 이용한 충남지역 소나무림의 바이오매스 모형 개발 (The Development of Biomass Model for Pinus densiflora in Chungnam Region Using Random Effect)

  • 표정기;손영모
    • 한국산림과학회지
    • /
    • 제106권2호
    • /
    • pp.213-218
    • /
    • 2017
  • 본 연구의 목적은 임의효과(random effect)를 이용하여 충남지역 임령-바이오매스 모형을 개발하고 임의효과의 적용성을 평가하는데 있다. 충남지역 소나무림의 임령에 따른 바이오매스 모형 개발을 위해 임분 구조를 고려하여 전국의 중부지방소나무 임분에서 30개소(150그루)를 조사하고 임령과 바이오매스 자료를 수집하였다. 모형 개발에서 중부지방소나무의 임령-바이오매스 관계는 고정효과(fixed effect)이고 지역간 차이를 임의효과로 설정하였다. 임의효과에 따른 모형의 적합도를 검정하기 위해 아카이케의 정보기준(Akaike Information Criterion, AIC)을 참고하고 지역간 차이에 따른 분산-공분산 행렬과 오차항을 추정하였다. 추정된 공분산은 -1.0022, 오차항은 0.6240이고 분산-공분산 행렬을 이용한 임의효과 모형의 AIC는 377.7을 나타내어 선행 연구와 이질적인 차이는 없었다. 이러한 결과는 범주형 자료의 임의효과가 모형 개발에 반영된 결과로 판단된다. 본 연구의 결과는 임의효과를 이용하여 일부지역에 국한되어 개발되었던 바이오매스 모형 연구에 활용이 가능하다.

지표면 기온 및 이슬점 온도를 고려한 여름철 월 최대 일 강수량의 비정상성 빈도해석 (Non-stationary frequency analysis of monthly maximum daily rainfall in summer season considering surface air temperature and dew-point temperature)

  • 이옥정;심인경;김상단
    • 한국습지학회지
    • /
    • 제20권4호
    • /
    • pp.338-344
    • /
    • 2018
  • 본 연구에서는 기후변화에 따른 극한 강우의 비정상성을 반영하기 위하여 GEV 분포의 3개 매개변수 중 위치매개변수를 공변량으로 적용하여, 지표면 기온(Surface air temperature, SAT) 및 이슬점 온도(Dew point temperature, DPT)을 고려한 비정상성 빈도해석이 실시된다. 부산 지점이 연구대상지점으로 선정되었으며, 5월부터 10월까지의 월 최대 일강수량을 이용하여 분석을 수행하였다. GEV 분포의 위치 매개변수를 위한 가장 적절한 공변량(기온과 이슬점 온도) 함수를 선택하기 위하여 다양한 모델을 구성하였으며, 구성된 모델 중 AIC(Akaike Information Criterion)가 가장 작은 모델을 최적 모델로 선정하였다. 분석 결과, exp(DPT)가 공변량인 비정상성 GEV 분포가 가장 적합한 것으로 나타났다. 선택된 모델을 이용하여 기후변화 시나리오에 따른 확률강우량의 영향을 분석하였으며, 부산지점의 경우 미래 이슬점 온도가 증가함에 따라 확률강우량이 증가할 가능성이 매우 높음을 살펴볼 수 있었다.

Signal Number Estimation Algorithm Based on Uniform Circular Array Antenna

  • Heui-Seon, Park;Hongrae, Kim;Suk-seung, Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.43-49
    • /
    • 2023
  • In modern wireless communication systems including beamformers or location-based services (LBS), which employ multiple antenna elements, estimating the number of signals is essential for accurately determining the quality of the communication service. Representative signal number estimation algorithms including the Akaike information criterion (AIC) and minimum description length (MDL) algorithms, which are information theoretical criterion models, determine the number of signals based on a reference value that minimizes each criterion. In general, increasing the number of elements mounted onto the array antenna enhances the performance of estimating the number of signals; however, it increases the computational complexity of the estimation algorithm. In addition, various configurations of array antennas for the increased number of antenna elements should be considered to efficiently utilize them in a limited location. In this paper, we introduce an efficient signal number estimation algorithm based on the beamspace based AIC and MDL techniques that reduce the computational complexity by reducing the dimension of a uniform circular array antenna. Since this algorithm is based on a uniform circular array antenna, it presents the advantages of a circular array antenna. The performance of the proposed signal number estimation algorithm is evaluated through computer simulation examples.

Computational analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV genome using MEGA

  • Sohpal, Vipan Kumar
    • Genomics & Informatics
    • /
    • 제18권3호
    • /
    • pp.30.1-30.7
    • /
    • 2020
  • The novel coronavirus pandemic that has originated from China and spread throughout the world in three months. Genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) predecessor, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) play an important role in understanding the concept of genetic variation. In this paper, the genomic data accessed from National Center for Biotechnology Information (NCBI) through Molecular Evolutionary Genetic Analysis (MEGA) for statistical analysis. Firstly, the Bayesian information criterion (BIC) and Akaike information criterion (AICc) are used to evaluate the best substitution pattern. Secondly, the maximum likelihood method used to estimate of transition/transversions (R) through Kimura-2, Tamura-3, Hasegawa-Kishino-Yano, and Tamura-Nei nucleotide substitutions model. Thirdly and finally nucleotide frequencies computed based on genomic data of NCBI. The results indicate that general times reversible model has the lowest BIC and AICc score 347,394 and 347,287, respectively. The transition/transversions bias for nucleotide substitutions models varies from 0.56 to 0.59 in MEGA output. The average nitrogenous bases frequency of U, C, A, and G are 31.74, 19.48, 28.04, and 20.74, respectively in percentages. Overall the genomic data analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV highlights the close genetic relationship.

AIC(AKaike's Information Criterion)을 이용한 교통량 예측 모형 (Traffic Forecasting Model Selection of Artificial Neural Network Using Akaike's Information Criterion)

  • 강원의;백남철;윤혜경
    • 대한교통학회지
    • /
    • 제22권7호
    • /
    • pp.155-159
    • /
    • 2004
  • 최근 교통량 예측을 위한 인공 신경망(Artificial neural networks : ANNs) 구조와 학습방법에 대한 연구가 다양하게 시도되고 있다. 이것은 신경망이 유연한 비선형 모형(non-linear model)으로 강력한 패턴 인식 능력을 가지고 있기 때문이다. 그러나, 신경망은 비선형 모형이기 때문에 많은 매개변수(parameter)를 사용하게 되면서 과적합(overfitting) 문제에 부딪히게 된다. 본 논문에서는 이러한 교통량 예측을 위한 신경망 모형에서 과적합을 해소하기 위한 방안으로 매개변수에 대한 다양한 모형선택기준(model selection criterion)에 대한 적용성에 대해서 알아보았다. 특히, AIC계열을 중심으로 모형선택기준으로 선택된 모형이 과적합 경향을 해소하고 시간적 전이성을 보장할 수 있는지를 분석하는데 본 연구의 목적을 두고 있다. 교통량 자료를 신경망 모형에 적용하여 분석한 결과, 첫째 학습자료(in-sample) 모형선택기준에 의해 선택된 모형이 검증자료(out-of-sample)의 최적의 성능을 보장하지는 못한다는 결과를 얻었다. 즉, 본 연구에서 기존의 연구에서처럼, 학습자료(in-sample)의 최적 모형이 검증자료(out-of-sample)의 성능과 직접적인 관계가 없다는 것을 알 수 있었다. 둘째 모형선택기준의 안정성을 분석한 결과 AIC3, AICC, BIC는 안정적인 모형을 선택하는 기준으로서 의미가 있는 것으로 분석되었다. 하지만, AIC4의 경우는 최상의 모형과 편차가 큰 것으로 분석되었다. 시계열 자료 분석과 예측에 있어서 모형의 불확실성은 학습 자료와 검증 자료의 상관관계에 영향을 줄 수 있음에 비춰볼 때, 앞으로 보다 많은 자료에 대한 분석이 필요하다고 판단되며, 다른 시계열 자료에 대한 분석이 요구된다. 수 없었지만, 확정적 통행배정모형으로 설정한 경우, Stackelberg게임 접근법이 Cournot-Nash게임 접근법 보다 더 우수함을 확인할 수 있었다.다.수안보 등 지역에서 나타난다 이러한 이상대 주변에는 대개 온천이 발달되어 있었거나 새로 개발되어 있는 곳이다. 온천에 이용하고 있는 시추공의 자료는 배제하였으나 온천이응으로 직접적으로 영향을 받지 않은 시추공의 자료는 사용하였다 이러한 온천 주변 지역이라 하더라도 실제는 온천의 pumping 으로 인한 대류현상으로 주변 일대의 온도를 올려놓았기 때문에 비교적 높은 지열류량 값을 보인다. 한편 한반도 남동부 일대는 이번 추가된 자료에 의해 새로운 지열류량 분포 변화가 나타났다 강원 북부 오색온천지역 부근에서 높은 지열류량 분포를 보이며 또한 우리나라 대단층 중의 하나인 양산단층과 같은 방향으로 발달한 밀양단층, 모량단층, 동래단층 등 주변부로 NNE-SSW 방향의 지열류량 이상대가 발달한다. 이것으로 볼 때 지열류량은 지질구조와 무관하지 않음을 파악할 수 있다. 특히 이러한 단층대 주변은 지열수의 순환이 깊은 심도까지 가능하므로 이러한 대류현상으로 지표부근까지 높은 지온 전달이 되어 나타나는 것으로 판단된다.의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{99m}Tc$-transierrin이 감염 병소의 영상진단에 사용될 수 있을 것으로 기대된다.리를 정량화 하였다. 특히 선조체에서의 도파민 유리에 의한 수용체 결합능의 감소는 흡연에 의한 혈중 니코틴의 축적 농도와 양의 상관관계를 보였다

비정상성 확률분포 및 재현기간을 고려한 홍수빈도분석 (Flood Frequency Analysis Considering Probability Distribution and Return Period under Non-stationary Condition)

  • 김상욱;이영섭
    • 한국수자원학회논문집
    • /
    • 제48권7호
    • /
    • pp.567-579
    • /
    • 2015
  • 본 연구에서는 모수(parameter)가 시간에 따라 변화하는 비정상성 확률분포를 훙수빈도분석에 적용하였다. 또한, 비정상성을 가정한 재현기간 및 위험도를 추정하였다. GEV (Generalized Extreme Value) 분포를 사용하여 정상성 및 비정상성 모형 4개를 구축하였으며 비정상성 모형은 위치모수(location parameter)만 선형경향성을 가지는 경우, 규모모수(scale parameter)만 선형경향성을 가지는 경우, 위치 및 규모모수가 모두 선형경향성을 가지는 경우의 3가지로 구분되었다. 구축된 4개의 모형 중 적합모형을 선정하기 위해 상대적 우도비 검정과 Akaike 정보기준을 사용하였으며, 우리나라의 8개 다목적댐(충주댐, 소양강댐, 안동댐, 임하댐, 합천댐, 대청댐, 섬진강댐, 주암댐)으로부터 취득된 과거 관측 댐 유입량을 사용하여 제안된 절차를 적용하고 결과를 비교분석하였다. 적합모형 선정 결과 합천댐과 섬진강댐이 비정상성 GEV 모형에 적합한 것으로 분석되었고, 나머지 6개 지점의 다목적댐들은 정상성 모형에 적합한 것으로 분석되었다. 특히 합천댐과 섬진강댐의 경우 비정상성 가정에서 산정된 재현기간이 정상성 가정에서 산정된 재현기간보다 작게 산정되었음을 알 수 있었다.

SARIMA 모델을 이용한 태양광 발전량 예측연구 (A Research of Prediction of Photovoltaic Power using SARIMA Model)

  • 정하영;홍석훈;전재성;임수창;김종찬;박형욱;박철영
    • 한국멀티미디어학회논문지
    • /
    • 제25권1호
    • /
    • pp.82-91
    • /
    • 2022
  • In this paper, time series prediction method of photovoltaic power is introduced using seasonal autoregressive integrated moving average (SARIMA). In order to obtain the best fitting model by a time series method in the absence of an environmental sensor, this research was used data below 50% of cloud cover. Three samples were extracted by time intervals from the raw data. After that, the best fitting models were derived from mean absolute percentage error (MAPE) with the minimum akaike information criterion (AIC) or beysian information criterion (BIC). They are SARIMA (1,0,0)(0,2,2)14, SARIMA (1,0,0)(0,2,2)28, SARIMA (2,0,3)(1,2,2)55. Generally parameter of model derived from BIC was lower than AIC. SARIMA (2,0,3)(1,2,2)55, unlike other models, was drawn by AIC. And the performance of models obtained by SARIMA was compared. MAPE value was affected by the seasonal period of the sample. It is estimated that long seasonal period samples include atmosphere irregularity. Consequently using 1 hour or 30 minutes interval sample is able to be helpful for prediction accuracy improvement.

운임의 인과성 (The Causality of Ocean Freight)

  • 모수원
    • 한국항만경제학회지
    • /
    • 제23권4호
    • /
    • pp.216-227
    • /
    • 2007
  • 건화물선 발틱운임인 케이프사이즈 운임지수(BCI), 파나막스사이즈 운임지수(BPI), 핸디막스사이즈 운임지수(BSI와 BHSI)들의 인과성과 효율성을 살펴본다. 인과성 분석을 위해 그란저 인과성 방법을 도입하여 BCI는 BPI, BSI, BHSI에 일방 그란저-cause하며, BSI는 BPI, BHSI에 일방 그란저-cause하고, BPI는 BHSI에 일방 그란저-cause함을 보인다. 이에 근거하여 모형을 구성하여 발틱 운임시장은 비효율적임을 보이고 예측능력 비교를 통해 BCI에 의한 발틱 핸디막스 운임의 예측력이 우수하며, 발틱 수퍼막스 운임과 발틱 케이프 사이즈 운임에 의한 발틱 파나막스 운임의 예측이 가장 정확하지 못함을 보인다.

  • PDF