• Title/Summary/Keyword: Airport Efficiency

Search Result 106, Processing Time 0.021 seconds

Settlement Behavior of Geogrid Reinforced Railroadbed (지오그리드로 보강된 철도노반의 침하 거동)

  • 신은철;김두환;김남현
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.407-414
    • /
    • 2000
  • Recently the geogrids are being used in some large projects such as Inchon International Airport construction, highway construction, and Korean High-Speed Railway construction with not only the merit of simple construction but also reinforcing efficiency for the soft ground. Main function of roadbed is to provide a stable foundation in terms of bearing capacity and settlement for the subballast and ballsat layers. Differential settlement of the railroad should be avoided. The cyclic laboratory model tests were performed to investigate the settlement behavior of geogrid reinforced railroadbed. The ratio of settlement of roadbed under cyclic loading with three layers of geogrid reinforced is less than 1/2 of the roadbed thickness without reinforcement.

  • PDF

A Design and Implementation of Web-based System for Real-Time Infographics of Airport Refueling Facilities (공항 급유 설비의 실시간 인포그래픽을 위한 웹 기반 시스템 설계 및 구현)

  • Shin, Seung-Hyeok
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.305-310
    • /
    • 2015
  • A controlling system for airport refueling facilities is connected to sensors which collect various informations. Informations which are transmitted at a high speed in various sensors are processed by a dedicated software in the controlling system. The problems of system maintenance and network traffic caused by the use of dedicated software reduce the efficiency of the system operation. Therefore, a web-based system that can be accessed using the Internet environment is required. In this paper, we propose a system showing web-based real-time informations. To do this, we change the function of the communication by each sensor to a facade structure, and design a system for transferring web-based real-time informations. Also we propose data-driven infographics for displaying the real-time big data information at a high speed on the web. Finally, we compare and analyse the proposed system between the existing system and show that our system can effectively display the real-time information on the web.

The Study on the Application of RE-CAT and Effectiveness (Wake Turbulence RE-CAT 적용과 효과성에 관한 연구)

  • Choi, Sang Il;Choi, Ji Ho;Yu, Soo Jeong;Lim, Min Sung;Oh, Min Ha;Lee, Soo Jung;Kim, Hyeon Mi;Kim, Hui Yang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.3
    • /
    • pp.34-43
    • /
    • 2021
  • Wake turbulence generated by the lead aircraft has a significant impact on the following aircraft and it is has been considered a key factor to consider whenin determining the longitudinal separation between the aircraft. ICAO classifies aircraft into four wake turbulence categories based on the maximum takeoff weight and provides the longitudinal separation minima for each category. Due to richer measured data and better understanding of physical processes, it is raised that classifying aircraft with only four wake turbulence grades is imprecise and leads to over-separation in many instances. In this regards, much research on a new method of classifying Wake Turbulence Category(Re-CAT) has been done by EURO-CONTROL, FAA, and ICAO. The main purpose of this study is to conduct a comparative analysis of the existing wake turbulence separation standards with Re-CAT in terms of departure capacity and the resulting benefits of Re-CAT using the data from the Incheon International Airport. The results show that EUROCONTROL and new ICAO standards have the greater effect on reducing wake turbulence separation, compared to the FAA RE-CAT standards. It is also concluded that Re-CAT presents different results of wake turbulence separation depending on the flight characteristics of each airport.

Application of Risk Management to Forecasting Transportation Demand by Delphi Technique (Delphi기법을 통한 교통수요예측 Risk Management 적용 방안)

  • Chung, Sung-Bong;Yi, Su-Ho;Namkung, Baek-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1572-1581
    • /
    • 2011
  • Since 'The Act on Private Investment of The Infrastructure' was established in 1994, private investment as well as government's investment has been active on transport infrastructure. But investment of transport infrastructure has more risks than others due to overforecast of transport demand for ensuring project validity, and cost uncertainty arising from financial crisis, commodity prices and so on. In the case of Incheon international airport express, after 2 years and 6 months, Incheon international airport express is opened, Korail take over equity stake in private investor due to the problems of MRG(Minimum Revenue Guarantee) be contracted with private investor. Not only that, in other case of Yong-in light rail, it is ongoing for legal disputes between Yong-in local government and private investor on account of opening delaying. On current Investment Assessment System of Transport Infrastructure, Risk Management system on investment of transport infrastructure is inadequate because Sensitivity Analysis in economic efficiency have been performed on the simple method which only changes benefits, expense and social discount rate. For this reason, this study analyze risks for investment of transport infrastructure demand forecast, and rise to the management practice for every particular item.

  • PDF

Development of standardized model of building GIS in Airport Movement Area (공항 이동지역 지리정보 구축 표준화 모델개발)

  • Kim, Byung-Jong;Kim, Won-Kyu;Lee, Dong-Hoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.3
    • /
    • pp.51-60
    • /
    • 2009
  • For the world's safest air traffic, safety-related areas through the large investment made in a sufficient safe level, but the airport's lack of safety management is concerned about the safety. Airside area is essential area for the flights, and activities of safe management in airside area is very important. Grafting of airside safety management and IT, importance of the safety and efficiency is growing. Advanced airports of world has applied GIS over 10 years ago, and through applying GIS, Airports GIS has been a specialized area. Therefore, this research is for geographic information standards and related laws, providing a guideline of regulations and standards for AIXM (Aeronautical Information Exchange Model), RTCA DO-272A (USER REQUIREMENTS FOR AERODROME MAPPING INFORMATION), FAA Advisory Circular 150/5300 -18A (General Guidance and Specifications for Submission of Aeronautical Survey to NGS: Field Data Collection and Geographic Information System Standards), and by analyzing aviation information and air map(notice "Civil Aviation Safety Authority No. 2009-1"), provide the direction of standardization for air map.

  • PDF

Application of Human Machine Interface and Augmented Reality Technology to Flight Operation (인간-기계 인터페이스 및 증강현실 기술의 항공운항 분야 적용)

  • Park, Hyeong Uk;Chung, Joon;Chang, Jo Won;Joo, Seonghyeon;Hwang, Young Ha
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.2
    • /
    • pp.54-69
    • /
    • 2019
  • The primary objective of this paper is to introduce the application of Human-Machine Interface (HMI) and Augmented Reality (AR) technologies in flight operations. These include: self-check-in, baggage handling, airport security and surveillance, airport operations monitoring, In-Flight Entertainment and Connectivity (IFEC), cockpit design, and cabin crew support. This paper investigates the application status and development trends of HMI and AR technologies for airports and aircraft. These technologies can provide more efficient in-flight passenger service and experience by using AR devices. This paper also discusses the developments such as; the Integrated Control Application (ICA) for the IFEC interface, AR flight simulation training program using the fixed-based simulator, and the AR aircraft cabin interior concept test program. These applications present how HMI and AR techniques can be utilized in actual flight operations. The developed programs in this paper can be applied to their purpose within aircraft interiors and services to enhance efficiency, comfort, and experience.

A Study for Estimation of Benefit from Upgrading Precision Approach Runway Category (정밀접근활주로 등급 상향에 따른 편익산정에 관한 연구)

  • Kim, HuiYang;Kweon, PilJe;Park, JangHoon;Baik, HoJong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.3
    • /
    • pp.70-81
    • /
    • 2019
  • The effects of weather on aircraft operations are predominant. In particular, severe weather, such as fog, strong winds, rainfall and snow, can cause delays, diversion or cancellation of operations. Of these, fog is considered the main reason for restricting aircraft operations. Meanwhile, Precision instrument approach using instrument landing system(ILS) has allowed aircraft to land safely even in situations where visibility is limited. However, the precision instrument approach require not only the performance of the aircraft but also the enhancement of the runway. In November 2018, Gimpo international Airport raised the category of the runway 14R from CAT-IIIa to CAT-IIIb to improve aviation safety and operational efficiency. Based on this, the research presented a methodology for estimating benefits according to the category upgrade of the precision approach runway, and estimated the benefits to Gimpo International Airport based on the methodology presented.

An Empirical Study on the Instrument Approach Procedure for Satellite Based Augmentation System (SBAS) APV-I (위성기반보정시스템(SBAS) APV-I 계기접근절차에 관한 실증 연구)

  • Yang, Yoonsung;Choi, Sangil;Kim, Hyeonmi;Kim, Huiyang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • Along with the remarkable advances in GNSS technology, SBAS further enhances the accuracy and integrity of GNSS location information and derives improvement in the safety and efficiency of air traffic management from reducing GNSS location errors, induced by passing through the ionosphere and atmosphere, to less than three meters. In this regard, ICAO specifies the standards of SBAS signals and recommends every party to phase in by 2025; and it is foreseeable that SBAS APV-I and CAT-I will be provided in South Korea by its undertaking the development of KASS, a Korean SBAS. The purpose of the study is to design SBAS APV-I procedure on the basis of the runway 15L of Incheon International Airport and conduct obstacle assessment according to PAN-OPS Doc. 8168, focusing on the usability and usefulness of SBAS APV-I. The results show that SBAS APV-I will provide better decision height compared to other PBN RNP approach procedures such as LNAV and Baro-VNAV at the Incheon International Airport.

A Study on the Improvement of Aviation Safety in Jeju Southern Air Corridor(AKARA-FUKUE Corridor) (제주남단 항공회랑(AKARA-FUKUE Corridor)의 항공안전 개선에 관한 연구)

  • Ahn, Hee-Bok;Hwang, Ho-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.55-66
    • /
    • 2021
  • ICAO recommended that airspace monitoring and periodic safety assessments in each Contracting State ensure the stability of the airspace, since reducing the aircraft lateral and vertical separation intervals would rather increase the risk of collision. The target level of safety of the AKARA-FUKUE Corridor at the southern end of Jeju was 247×10-9. In simple comparison, this means that the risk of an aircraft collision in this area (international safety standards, 5.0×10-9) is about 50 times higher. The scope of this study is to organize the concept of terms, analyze the air traffic volume, the current status of navigational safety facility usage fees, and investigations of an aircraft collision risk in Jeju southern air corridor. Analyzing government policies and overseas evaluations, revising some of the existing contents, presenting some of the additional contents of new routes, and changing the instrument procedure for Korean-Chinese routes, change of arrive/departure route between Incheon Airport and Shanghai Airport, reduce the risk of aircraft collisions. We hope to restore airspace sovereignty, contribute to policies for the government to take the lead in solving this problem, and expect stability and operational efficiency in air traffic.

Effective simulation-based optimization algorithm for the aircraft runway scheduling problem

  • Wided, Ali;Fatima, Bouakkaz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.335-347
    • /
    • 2022
  • Airport operations are well-known as a bottleneck in the air traffic system, putting growing pressure on the world's busiest airports to schedule arrivals and departures as efficiently as possible. Effective planning and control are essential for increasing airport efficiency and reducing aircraft delays. Many algorithms for controlling the arrival/departure queuing area are handled, considering it as first in first out queues, where any available aircraft can take off regardless of its relative sequence with other aircraft. In the suggested system, this problem was compared to the problem of scheduling n tasks (plane takeoffs and landings) on a multiple machine (runways). The proposed technique decreases delays (via efficient runway allocation or allowing aircraft to be expedited to reach a scheduled time) to enhance runway capacity and decrease delays. The aircraft scheduling problem entails arranging aircraft on available runways and scheduling their landings and departures while considering any operational constraints. The topic of this work is the scheduling of aircraft landings and takeoffs on multiple runways. Each aircraft's takeoff and landing schedules have time windows, as well as minimum separation intervals between landings and takeoffs. We present and evaluate a variety of comprehensive concepts and solutions for scheduling aircraft arrival and departure times, intending to reduce delays relative to scheduled times. When compared to First Come First Serve scheduling algorithm, the suggested strategy is usually successful in reducing the average waiting time and average tardiness while optimizing runway use.