• Title/Summary/Keyword: Airfoil Aerodynamic Characteristics

Search Result 139, Processing Time 0.023 seconds

A Study of Multi-point Numerical Optimization Design for Transonic Airfoils (천음속 날개꼴의 Multi-point 수치최적화 설계에 관한 연구)

  • 손명환;권성재
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.145-153
    • /
    • 1998
  • In the direct numerical optimization method, the aerodynamic coefficients of the airfoil designed by one-point design can be deteriorated at other operating points. Therefore, the capacity of the multi-point design is indispensable for actual airfoil design. In this paper, the two-point design of transonic airfoils is studied based on the Navier-Stokes equations flow solver and the feasible direction optimization algorithm, and the effects of weighting parameter were analyzed and compared. The results show that the airfoils designed by two-point design satisfy the performances at the peripheral regions of two operating points concurrently and have the favorable aerodynamic characteristics at the point which has larger weighting parameter than the other point.

  • PDF

Aerodynamic Characteristics of Giromill with High Solidity (높은 솔리디티를 갖는 자이로밀의 공기역학적 특성)

  • Lee, Ju-Hee;Yoo, Young-So
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1273-1283
    • /
    • 2011
  • A 3-dimensional unsteady numerical analysis has been performed to evaluate the aerodynamic characteristics of a Giromill. Generally, the structure of a Giromill is simple and therefore easy to develop. In addition, the high solidity of the Gironmill helps improve the self-starting capacity at a low tip speed ratio (TSR). However, contrary to the Darrieus wind turbine which has a TSR of 4-7, a Giromill has a low TSR of 1-3. In this study, the aerodynamic characteristics of the Giromill are investigated using computational fluid dynamics (CFD). Three straight-bladed wings are used, and the solidity of the Giromill is 0.75. In contrast to a Darrieus wind turbine having low solidity, the Giromill shows a sudden decrease in the aerodynamic performance because of the interference between the wings and an increase in the drag on the wings in the downstream direction where wind flow is significantly reduced. Consequently, the aerodynamic performance decreased at a TSR value lower than 2.4.

A Study of Aerodynamic Analysis for the Wind Turbine Rotor Blade using a general CFD code (풍력 발전기용 블레이드 공력해석에 대한 연구)

  • Park, Sang-Gyoo;Kim, Jin-Bum;Yeo, Chang-Ho;Kim, Tae-Woo;Kweon, Ki-Yeoung;Oh, Si-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.516-520
    • /
    • 2009
  • This study describes aerodynamic characteristics for the HAWT (Horizontal Axis Wind Turbine) rotor blade using general CFD(Computational Fluid Dynamics) code. The boundary conditions for analysis are validated with the experimental result by the NREL (National Renewable Energy Laboratory)/NASA Ames wind tunnel test for S809 airfoil. In the case of wind turbine rotor blade, complex phenomena are appeared such as flow separation and re-attachment. Those are handled by using a commercial flow analysis tool. The 2-equation k-$\omega$ SST turbulence model and transition model appear to be well suited for the prediction. The 3-dimensional phenomena in the HAWT rotor blade is simulated by a commercial 3-D aerodynamic analysis tool. Tip vortex geometry and Radial direction flows along the blade are checked by the analysis.

  • PDF

Morphing Wing Mechanism Using an SMA Wire Actuator

  • Kang, Woo-Ram;Kim, Eun-Ho;Jeong, Min-Soo;Lee, In;Ahn, Seok-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • In general, a conventional flap on an aircraft wing can reduce the aerodynamic efficiency due to geometric discontinuity. On the other hand, the aerodynamic performance can be improved by using a shape-morphing wing instead of a separate flap. In this research, a new flap morphing mechanism that can change the wing shape smoothly was devised to prevent aerodynamic losses. Moreover, a prototype wing was fabricated to demonstrate the morphing mechanism. A shape memory alloy (SMA) wire actuator was used for the morphing wing. The specific current range was measured to control the SMA actuator. The deflection angles at the trailing edge were also measured while various currents were applied to the SMA actuator. The trailing edge of the wing changed smoothly when the current was applied. Moreover, the deflection angle also increased as the current increased. The maximum frequency level was around 0.1 Hz. The aerodynamic performance of the deformed airfoil by the SMA wire was analyzed by using the commercial program GAMBIT and FLUENT. The results were compared with the results of an undeformed wing. It was demonstrated that the morphing mechanism changes the wing shape smoothly without the extension of the wing skin.

Prediction of aerodynamics using VGG16 and U-Net (VGG16 과 U-Net 구조를 이용한 공력특성 예측)

  • Bo Ra, Kim;Seung Hun, Lee;Seung Hyun, Jang;Gwang Il, Hwang;Min, Yoon
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.109-116
    • /
    • 2022
  • The optimized design of airfoils is essential to increase the performance and efficiency of wind turbines. The aerodynamic characteristics of airfoils near the stall show large deviation from experiments and numerical simulations. Hence, it is needed to perform repetitive analysis of various shapes near the stall. To overcome this, the artificial intelligence is used and combined with numerical simulations. In this study, three types of airfoils are chosen, which are S809, S822 and SD7062 used in wind turbines. A convolutional neural network model is proposed in the combination of VGG16 and U-Net. Learning data are constructed by extracting pressure fields and aerodynamic characteristics through numerical analysis of 2D shape. Based on these data, the pressure field and lift coefficient of untrained airfoils are predicted. As a result, even in untrained airfoils, the pressure field is accurately predicted with an error of within 0.04%.

Software Development for the Performance Analysis of the HAWT based on BEMT (BEMT를 적용한 수평축 풍력터빈 성능해석 소프트웨어의 개발)

  • Kim, Beom-Seok;Nam, Cheong-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.575-578
    • /
    • 2005
  • The optimum design and the performance analysis software called POSEIDON for the HAWT (Horizontal Axis Wind Turbine) was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The lift and the drag coefficient of S-809 airfoil were predicted via X-FOIL and also the post stall characteristics of S-809 were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the wind tunnel test results, performed by Sommers in Delft university of technology. The rated power of the testing rotor is 20kW(FIL-20) at design conditions. The experimental aerodynamic parameters and the X-FOIL data were used for the power prediction of the FIL-20 respectively. The comparison results shows good agreement in power prediction.

  • PDF

DESIGN OF HIGH LIFT FLAP WITH OPTIMIZATION TECHNIQUE (최적화 기법을 이용한 고양력 플랩 설계)

  • Kim, C.W.;Lee, Y.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.227-228
    • /
    • 2008
  • In the present paper, fowler flap was optimized to maximize the lift with response surface method. Leading edge shape and the gap between main airfoil and flap, were optimized and the aerodynamic characteristics was improved considerably. The optimized flap has more rounded leading edge and bigger gap. Before angle of attack, $10^{\circ}$, lift and drag are improved and the optimized flap shows similar aerodynamic characteristics to the original flap. The flow condition for optimization was angle of attack, $10^{\circ}$, Mach number, 0.2, flap deflection, $40^{\circ}$.

  • PDF

DESIGN OF HIGH LIFT FLAP WITH OPTIMIZATION TECHNIQUE (최적화 기법을 이용한 고양력 플랩 설계)

  • Kim, C.W.;Lee, Y.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.227-228
    • /
    • 2008
  • In the present paper, fowler flap was optimized to maximize the lift with response surface method. Leading edge shape and the gap between main airfoil and flap, were optimized and the aerodynamic characteristics was improved considerably. The optimized flap has more rounded leading edge and bigger gap. Before angle of attack, $10^{\circ}$, lift and drag are improved and the optimized flap shows similar aerodynamic characteristics to the original flap. The flow condition for optimization was angle of attack, $10^{\circ}$, Mach number, 0.2, flap deflection, $40^{\circ}$.

  • PDF

Software Development for the Performance Analysis of the HAWT based on BEMT (BEMT를 적용한 수평축 풍력터빈 성능해석 소프트웨어의 개발)

  • Kim, Beom-Seok;Lee, Young-Ho
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.38-42
    • /
    • 2005
  • The optimum design and the performance analysis software called POSEIDON for the HAWT [Horizontal Axis Wind Turbine] was developed by use of BEMT. The Prandtl's tip loss theory was adopted to consider the blade tip loss. The lift and the drag coefficient of S-809 airfoil were predicted via X-FOIL and also the post stall characteristics of S-809 were estimated by the Viterna's equations. All the predicted aerodynamic characteristics are fairly well agreed with the wind tunnel test results, performed by Sommers in Delft university of technology. The rated power of the testing rotor is 20kW[FIL-20] at design conditions. The experimental aerodynamic parameters and the X-FOIL data were used for the power prediction of the FIL-20 respectively. The comparison results shows good agreement in power prediction.

  • PDF

Wind Tunnel Test of Smart Un-manned Aerial Vehicle(SUAV) for TR-E2S1 Configuration (스마트 무인기 TR-E2S1 형상 풍동시험 결과)

  • Yoon SunEiun;Cho Tahwan;Chung Jindeog
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.295-305
    • /
    • 2005
  • To improve the aerodynamic effciency of TR-E2, a new configuration so called TR-E2Sl was introduced. TR-2251 is composed of different wing airfoil section and T-tail shape compared with TR-E2. Wind tunnel test for TR-EBS1 had been performed by changing the incidence angles of wing and deflection angles of control surfaces such as elevator and rudder. Also the on/off effect of ventral fin attached underneath of AFT fuselage was tested. Test result showed that variations of wing incidence angle did not cause any severe differences in aerodynamic characteristics. Longitudinal and directional characteristics of TR-E2S1 show stable for the pitch and yaw motions. However, the lateral stability of TR-E2S1 is not stable for a certain control surface deflection.