• 제목/요약/키워드: Airflow Path

검색결과 11건 처리시간 0.027초

FLUENT를 활용한 콘크리트 건식 저장용기 공기유로 내부 유동장 해석 (ANALYSIS ON FLOW FIELDS IN AIRFLOW PATH OF CONCRETE DRY STORAGE CASK USING FLUENT CODE)

  • 강경욱;김형진;조천형
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.47-53
    • /
    • 2016
  • This study investigated natural convection flow behavior in airflow path designed in concrete dry storage cask to remove the decay heat from spent nuclear fuels. Using FLUENT 16.1 code, thermal analysis for natural convection was carried out for three dimensional, 1/4 symmetry model under the normal condition that inlet ducts are 100% open. The maximum temperatures on other components except the fuel regions were satisfied with allowable values suggested in nuclear regulation-1536. From velocity and temperature distributions along the flow direction, the flow behavior in horizontal duct of air inlet and outlet duct, annular flow-path and bent pipe was delineated in detail. Theses results will be used as the theoretical background for the composing of airflow path for the designing of passive heat removal system by understanding the flow phenomena in airflow path.

레인지후드 덕트설치 조건에 따른 소음 및 풍량특성 연구 (A Study on the Performance of Noise Level and Airflow Amount of a Kitchen Hood by the Different Conditions of Airflow Path.)

  • 김일호;김윤재;이용준;이규동
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 추계 학술논문 발표대회
    • /
    • pp.11-14
    • /
    • 2007
  • Noise level and Airflow amount of a kitchen hood are affected by the conditions of airflow path. Thus this study is expected to be used as a basic reference in designing airflow path of apartment housing throughout analysing changes in noise level and airflow amount from the various conditions of airflow path. Noise level generated by the kitchen hood is estimated in a kitchen and a living room of two constructed apartment houses, and an experiment is conducted in an half anechoic chamber to analyze noise level and airflow amount by the different length, diameter and number of windings of a round shaped soft duct which is connected to the kitchen hood. The measured results in apartment houses show that the noise level in both apartments exceeds the NC standard greatly in living spaces. In apartment A, a regular apartment house, the noise level was $NC-65{\sim}75$, $NC-45{\sim}60$ and NC-70, NC-45 in the kitchen and living room with an operation of kitchen hood in 1 and 3 stages. In apartment B, an apartment complex, the noise level was NC-55 and NC-60 in the kitchen and living room with an operation of kitchen hood in 3 stages. In particular, there was an increase of noise level at 125Hz-band resulted from an amplification of sound, which requires adequate measures in noise reduction. The results measured in Half anechoic chamber show 99% of airflow amount increase with the modification of a duct' s diameter from ${\Phi}$ 100mm to ${\Phi}$ 125mm, 37% of airflow amount increase with the modification of a duct' s diameter from ${\Phi}$ 125mm to ${\Phi}$ 150mm, and 173% of airflow amount increase with the modification of a duct' s diameter from ${\Phi}$ l00mm to ${\Phi}$ 150mm. The noise level was lower than the level measured in apartment housing about 20 in NC-value and 11.4 in dB(A)-value, which was interpreted as the effect of the load by the pressure condition at the rear end of the duct. Also, an amplification of sound in 125Hz-band influenced NC-value considerably, therefore effective measure is needed.

  • PDF

기판의 열확산에 의한 3차원 공랭모듈로부터의 열전달촉진에 관한 연구 (Enhancement of Heat Transfer from an Air-Cooled 3-Dimensional Module by means of Heat Spreading in the Board)

  • 박상희;홍택
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.1022-1030
    • /
    • 2002
  • The experiments were performed with a $31{\times}31{\times}7mm^3$ simulated 3-dimensional module on the thermal conductive board of a parallel plate channel. The convective thermal conductance for the path from the module surface directly to airflow and conjugate thermal conductance for the path leading from the module to the floor by way of a module support, then, to the airflow were determined with several combinations of module-support-construction(210, 0.32, 0.021 K/W)/floor-material(398, 0.236W/mK) and channel height(15-30mm). As the result, it was found that the conjugate thermal conductance and the temperature distribution around the module depend on the thermal resistance of the module support, and the channel height. These configurations were designed to investigate on the feasibility of using the substrate as an effective heat spreader in the forced convective air-cooling of surface mounted heat source. The experimental results were discussed in the light of interactive nature of heat transfer through two paths, one directed from the module to the airflow and the other via the module support and the floor to the air.

Isogemetric aeroelastic analysis of composite cylindrical panels with curvilinear fibers

  • Mohammad Mahdi Navardi;Hossein Shahverdi;Vahid Khalafi
    • Steel and Composite Structures
    • /
    • 제52권5호
    • /
    • pp.515-524
    • /
    • 2024
  • The principal goal of the present study is to examine the aeroelastic analysis of cylindrical laminated shells with curvilinear fibers. To attain this objective, the equations of motion are firstly extracted according to the first-order shear deformation theory (FSDT). The linear piston theory is then implemented to estimate aerodynamic loads for various airflow angles over the cylindrical shell area, providing the aeroelastic equations. The well-known isogeometric analysis based on the NURBS basis functions is subsequently developed to discretize the aeroelastic equations of the considered problem. Finally, by writing the resultant equations in the standard form of an eigenvalue problem, the panel flutter analysis of a cylindrical variable stiffness composite laminated (VSCL) shell will be carried out. The comparison and validation of achieved results with the results of references mentioned in the literature are made to demonstrate the accurateness of the present formulation. Also, the influence of various parameters, including the airflow angle, fiber path orientation, radius of curvature, and converting symmetric lay-up to unsymmetrical lay-up on the flutter threshold is studied.

항공기 무장시스템 Gun Gas 공력특성에 관한 연구 (Aerodynamic Effects of Gun Gas on the Aircraft's Armament System)

  • 최형준;김승한
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.623-629
    • /
    • 2020
  • 본 연구는 항공기 기총발사 비행조건에서 Gun Port 주변 공기 유동장을 분석하여 디버터(Diverter) 옵션 형상에 따른 Gun Gas 유동량 및 경로를 확인하고 항공기 성능 및 안전성 영향을 확인하였다. Gun Port Diverter는 기총사격 시 발생하는 열을 효과적으로 낮춰주는 역할을 할 뿐아니라 Gun Gas를 상향방향으로 효율적으로 배출시키는 역할을 수행하며, 그 형상에 따라 Gun Gas 경로가 변경될 수 있다. 후방 Gun Port Diverter의 옵션 형상에 따라 기총 발사 시 Gun Gas의 유량, 경로, 압력을 분석하였다. Gun Port 내부 속도분포와 온도변화를 분석한 결과 후방 Diverter를 지나는 유량은 옵션 형상에 따라 급격이 감소하는 경향을 보이지만, 전방을 지나는 유량은 변화가 적은 비슷한 경향을 보임을 확인하였다. 따라서 기총발사 시 발생하는 Gun Gas는 후방 Gun Port Diverter 옵션 형상과 관계없이 항공기 표면에서 충분한 유동 거리가 확보되며, Diverter 옵션 형상에 따른 Gun Gas 유동의 정체는 Gun Port 내부 온도 상승에 큰 영향을 미침을 확인하였다.

무-밸브 공기흡입 펄스데토네이션 엔진의 내부 유동과 성능 (Internal Flow Dynamics and Performance of Valveless Airbreathing Pulse Detonation Engine)

  • ;최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.367-370
    • /
    • 2006
  • This paper deals with the modeling and simulation of the internal flowfield in a valveless airbreathing pulse detonation engine (PDE) currently under experimental development at the U.S. Naval Postgraduate School. The system involves no valves in the airflow path, and the isolation between the inlet and combustor is achieved through the gasdynamics in an isolator. The analysis accommodates the full conservation equations in axisymmetric coordinates, and takes into account variable properties for ethylene/oxygen/air system. Chemical reaction schemes with a single progress variable are implemented to minimize the computational burden. Detailed flow evolution during a full cycle is explored and propulsive performance is calculated. Effect of initiator mass injection rate is examined and results indicate that the mass injection rate should be carefully selected to avoid the formation of recirculation zones in the initial cold flowfield. Flow evolution results demonstrate a successful detonation transmission from the initiator to the combustor. However, strong pressure disturbance may propagate upstream to the inlet nozzle, suggesting the current configuration could be further refined to provide more efficient isolation between the inlet and combustor.

  • PDF

고층건물에서 로비층의 평면형태가 연돌효과에 미치는 영향 (Effect of the a floor plan of lobby floor for the Stack Effect in a High-rise Building)

  • 이준호;임현우;서정민;이중훈;송두삼
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.293-299
    • /
    • 2009
  • Many kinds of problems by stack effect occur in the high-rise buildings that have the simple plan on the first floor designed only by an external wall and an E/V shaft wall. Therefore, some buildings in the foreign countries has made the additional inside walls between lobby and E/V hall as a countermeasure on stack effect. An additional wall in the lobby is very useful countermeasure on stack problems because lobby is a main airflow path in the building. Decreasing effect on stack problems by an additional wall of lobby is reported in this study. An ordinary office building that has a simple lobby plan is simulated and measured in this study. The results show that characteristics on stack effect are changed by methods of applying additional walls and that alternations of countermeasures which building conditions like the kinds of problems and the problem's velocity etc. are considered are very important.

  • PDF

Vorticity Analysis Associated with Drafting Cylinders for Pneumatic Spinning

  • Bergada J.M.;Valencia E.;Coll Ll
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.146-157
    • /
    • 2006
  • Traditional spinning systems have reached profitability limits in developed countries due to high production costs and low system productivity. Pneumatic spinning is seen as a developing system, because productivity is much higher than conventional systems. This study evaluates one of the main problems to increase productivity in pneumatic spinning, where air mass-flow is dragged by the drafting cylinders. This flow interacts with the incoming fibres deviating them from their expected path. Via laser anemometry, airflow velocity distribution around drafting cylinders has been measured and it has been found that vorticity is created at the cylinder's inlet. Extensive CFD simulation on the air flow dragged by the cylinders has given a clear insight into the vortex created, producing valuable information on how cylinder design affects the vorticity created. Several drafting cylinder designs have been tested without giving any improvement in productivity. However, the use of a drafting cylinder with holes in it produced good results to the problem of air currents, strongly reducing them and therefore allowing a sharp increase in yarn quality, as well as an increase in productivity. An extensive study on vortex kinematics has been undertaken, bringing with it a better understanding of vortex creation, development and breakdown.

Enhancement of Ozone and Carbon Monoxide Associated with Upper Cut-off Low during Springtime in East Asia

  • Moon, Yun-Seob;Drummond, James R.
    • 한국대기환경학회지
    • /
    • 제26권5호
    • /
    • pp.475-489
    • /
    • 2010
  • In order to verify the enhancement of ozone and carbon monoxide (CO) during springtime in East Asia, we investigated weather conditions and data from remote sensors, air quality models, and air quality monitors. These include the geopotential height archived from the final (FNL) meteorological field, the potential vorticity and the wind velocity simulated by the Meteorological Mesoscale Model 5 (MM5), the back trajectory estimated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the total column amount of ozone and the aerosol index retrieved from the Total Ozone Mapping Spectrometer (TOMS), the total column density of CO retrieved from the Measurement of Pollution in the Troposphere (MOPITT), and the concentration of ozone and CO simulated by the Model for Ozone and Related Chemical Tracers (MOZART). In particular, the total column density of CO, which mightoriginate from the combustion of fossil fuels and the burning of biomass in China, increased in East Asia during spring 2000. In addition, the enhancement of total column amounts of ozone and CO appeared to be associated with both the upper cut-off low near 500 hPa and the frontogenesis of a surface cyclone during a weak Asian dust event. At the same time, high concentrations of ozone and CO on the Earth's surface were shown at the Seoul air quality monitoring site, located at the surface frontogenesis in Korea. It was clear that the ozone was invaded by the downward stretched vortex anomalies, which included the ozone-rich airflow, during movement and development of the cut-off low, and then there was the catalytic photochemical reaction of ozone precursors on the Earth's surface during the day. In addition, air pollutants such as CO and aerosol were tracked along both the cyclone vortex and the strong westerly as shown at the back trajectory in Seoul and Busan, respectively. Consequently, the maxima of ozone and CO between the two areas showed up differently because of the time lag between those gases, including their catalytic photochemical reactions together with the invasion from the upper troposphere, as well as the path of their transport from China during the weak Asian dust event.

유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구 (A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate)

  • 조현성;김철호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.378-383
    • /
    • 2013
  • 가솔린엔진의 출력제어를 위해 나비형(butterfly-type) 스로틀밸브가 응용되고 있다. 그러나 기존의 나비형 스로틀밸브는 밸브 후방에서 발생하는 강한 와류현상으로 인해 매우 큰 흡입 유로의 저항을 유발하게 된다. 이러한 유로저항은 엔진의 체적효율(volumetric efficiency)을 떨어뜨려 궁극적으로 엔진의 출력과 효율에 부정적인 영향을 미치게 된다. 본 연구에서는 CFD수치해석 기법을 이용하여 기존 나비형 스로틀밸브의 문제점 개선을 위해 제안한 벤투리형(venturi-type) 가변스로틀밸브(VGTV)의 공기역학적 작동특성에 관해 알아보았으며, 본 장치의 유량과 저항계수($K_L$)의 변화특성 분석을 통해 가솔린엔진의 체적효율 개선효과를 평가하는데 연구의 목적을 두고 있다. 본 연구를 통해 기존의 나비형 스로틀밸브에 비해 새롭게 제안된 벤투리형 가변스로틀밸브의 유로저항이 평균 49.0%정도 개선된다는 사실을 알 수 있었으며, 이는 엔진의 체적효율과 출력에 매우 큰 영향을 줄 것으로 기대된다.