DOI QR코드

DOI QR Code

Isogemetric aeroelastic analysis of composite cylindrical panels with curvilinear fibers

  • Mohammad Mahdi Navardi (Department of Aerospace Engineering, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Hossein Shahverdi (Department of Aerospace Engineering, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Vahid Khalafi (Aerospace Engineering Department, Shahid Sattari Aeronautical University of Science and Technology)
  • Received : 2023.10.04
  • Accepted : 2024.08.15
  • Published : 2024.09.10

Abstract

The principal goal of the present study is to examine the aeroelastic analysis of cylindrical laminated shells with curvilinear fibers. To attain this objective, the equations of motion are firstly extracted according to the first-order shear deformation theory (FSDT). The linear piston theory is then implemented to estimate aerodynamic loads for various airflow angles over the cylindrical shell area, providing the aeroelastic equations. The well-known isogeometric analysis based on the NURBS basis functions is subsequently developed to discretize the aeroelastic equations of the considered problem. Finally, by writing the resultant equations in the standard form of an eigenvalue problem, the panel flutter analysis of a cylindrical variable stiffness composite laminated (VSCL) shell will be carried out. The comparison and validation of achieved results with the results of references mentioned in the literature are made to demonstrate the accurateness of the present formulation. Also, the influence of various parameters, including the airflow angle, fiber path orientation, radius of curvature, and converting symmetric lay-up to unsymmetrical lay-up on the flutter threshold is studied.

Keywords

References

  1. Akhavan, H. and Ribeiro, P. (2018), "Aeroelasticity of composite plates with curvilinear fibres in supersonic flow", Compos. Struct., 194, 335-344. https://doi.org/10.1016/j.compstruct.2018.03.101. 
  2. AminYazdi, A. (2021), "Flutter of geometrical imperfect functionally graded carbon nanotubes doubly curved shells", Thin-Wall. Struct., 164, 107798. https://doi.org/10.1016/j.tws.2021.107798. 
  3. Bahadur, R., Upadhyay, A.K. and Shukla, K.K. (2017), "Static analysis of singly and doubly curved panels on rectangular planform", Steel Compos. Struct., 24(6), 659-670. https://doi.org/10.12989/scs.2017.24.6.659. 
  4. Bendahmane, A., Hamza-Cherif, S.M. and Ouissi, M.N. (2021), "Free vibration analysis of variable stiffness composite laminate (VSCL) plates coupled with fluid", Mech. Adv. Mater. Struct., 28(2), 167-181. https://doi.org/10.1080/15376494.2018.1553257. 
  5. Farsadi, T., Asadi, D. and Kurtaran, H. (2020), "Nonlinear flutter response of a composite plate applying curvilinear fiber paths", Acta Mechanica, 231(2), 715-731. https://doi.org/10.1007/S00707-019-02564-Y. 
  6. Fazilati, J., Khalafi, V. and Jalalvand, M. (2022), "Free vibration analysis of three-phase CNT/polymer/fiber laminated tow-steered quadrilateral plates considering agglomeration effects", Thin-Wall. Struct., 179, 109638. https://doi.org/10.1016/j.tws.2022.109638. 
  7. Gao, Y., Duan, J., Lei, Y. and Xu, B. (2022), "Aerothermoelastic analysis of curvilinear fiber variable stiffness laminated panels in supersonic flow", Acta Mechanica, 233(11), 4327-4345. https://doi.org/10.1007/S00707-022-03331-2/METRICS. 
  8. Guenanou, A., Houmat, A., Hachemi, M., Chebout, R. and Bachari, K. (2022), "Free vibration of shear deformable symmetric VSCL elliptical plates by a curved rectangular p-element", Mech. Adv. Mater. Struct., 29(3), 362-371. https://doi.org/10.1080/15376494.2020.1770382. 
  9. Honda, S. and Narita, Y. (2012), "Natural frequencies and vibration modes of laminated composite plates reinforced with arbitrary curvilinear fiber shape paths", J. Sound Vib., 331(1), 180-191. https://doi.org/10.1016/J.JSV.2011.08.019 
  10. Hughes, T.J., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008. 
  11. Kiani, Y. and Mirzaei, M. (2019), "Isogeometric thermal postbuckling of FG-GPLRC laminated plates", Steel Compos. Struct., 32, 821-832. https://doi.org/10.12989/scs.2019.32.6.821. 
  12. Kouchakzadeh, M.A., Rasekh, M. and Haddadpour, H. (2010), "Panel flutter analysis of general laminated composite plates", Compos. Struct., 92(12), 2906-2915. https://doi.org/10.1016/j.compstruct.2010.05.001. 
  13. Mohapatra, S., Sharma, N., Dewangan, H.C. and Panda, S.K. (2022), "Flutter characteristics of multi-layered composite shell panels under supersonic flow with curvature effect", Waves Random Complex Media, 1-19. https://doi.org/10.1080/17455030.2022.2083719. 
  14. Navardi, M.M., Shahverdi, H. and Khalafi, V. (2023), "Aeroelastic Tailoring of Variable Stiffness Composite Laminated Quadrilateral and Circular Plates in Supersonic Flow Using Isogeometric Approach", Int. J. Appl. Mech., 15(01), 2250091. https://doi.org/10.1142/S1758825122500910. 
  15. Ouyang, X. and Liu, Y. (2021), "Flutter of variable stiffness composite laminates in supersonic flow with temperature effects", J. Compos. Mater., 55(23), 3253-3266. https://doi.org/10.1177/00219983211007542. 
  16. Rahmanian, M., Farsadi, T. and Kurtaran, H. (2021), "Nonlinear flutter of tapered and skewed cantilevered plates with curvilinear fiber paths", J. Sound Vib., 500, 116021. https://doi.org/10.1016/J.JSV.2021.116021. 
  17. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, London, British.
  18. Ribeiro, P. (2016), "Linear modes of vibration of cylindrical shells in composite laminates reinforced by curvilinear fibres", J. Vib. Control, 22(20), 4141-4158. https://doi.org/10.1177/1077546315571661. 
  19. Sawyer, J.W. (1977), "Flutter and buckling of general laminated plates", J. Aircraft, 14(4), 387-393. https://doi.org/10.2514/3.58789. 
  20. Shafei, E. and Shirzad, A. (2017), "Ant colony optimization for dynamic stability of laminated composite plates", Steel Compos. Struct., 25(1), 105-116. https://doi.org/10.12989/scs.2017.25.1.105. 
  21. Shahverdi, H., Navardi, M.M. and Khalafi, V. (2021), "Optimization of free vibration and flutter analysis of composite plates using a coupled method of genetic algorithm and generalized differential quadrature", Int. J. Appl. Mech., 13(08), 2150090. https://doi.org/10.1142/S1758825121500903. 
  22. Singha, M.K. and Ganapathi, M. (2005), "A parametric study on supersonic flutter behavior of laminated composite skew flat panels", Compos. Struct., 69(1), 55-63. https://doi.org/10.1016/j.compstruct.2004.04.018. 
  23. Singha, M.K. and Mandal, M. (2008), "Supersonic flutter characteristics of composite cylindrical panels", Compos. Struct., 82(2), 295-301. https://doi.org/10.1016/j.compstruct.2007.01.007. 
  24. Wang, J., Ma, B., Gao, J., Liu, H., Safaei, B. and Sahmani, S. (2022), "Nonlinear stability characteristics of porous graded composite microplates including various microstructural-dependent strain gradient tensors", Int. J. Appl. Mech., 14(01), 2150129. 
  25. Zanussi, V.P., Shahverdi, H., Khalafi, V. and Navardi, M.M. (2023), "Nonlinear flutter analysis of arbitrary functionally graded plates using Isogeometric approach", Thin-Wall. Struct., 182, 110236. https://doi.org/10.1016/J.TWS.2022.110236.