• 제목/요약/키워드: Aircraft landing problem

검색결과 34건 처리시간 0.021초

항공기 착륙 문제의 다항시간 알고리즘 (A Polynomial Time Algorithm for Aircraft Landing Problem)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권9호
    • /
    • pp.161-168
    • /
    • 2014
  • 공항에 불규칙한 시간간격으로 접근하는 항공기들을 최소의 비용으로 착륙시키는 항공기 착륙 문제 (ALP)는 최적 해를 구하기 어려워 다양한 메타휴리스틱 방법들이 제안되고 있다. 본 논문에서는 ALP에 대해 O(nlog n)의 다항시간으로 최적 해를 구하는 휴리스틱 알고리즘을 제안한다. 제안된 알고리즘은 착륙 목표시간 오름차순으로 정렬시키고, 항공기들 간의 분리 시간과 착륙 비용을 고려하여 착륙순서를 변경시킨 최적화 과정을 수행하는 방법을 적용하였다. ALP에 대한 예제 데이터인 Airland1 ~ Airland8에 대해 소요비용이 0이 되는 활주로 개수 m까지 25개 데이터를 실험한 결과 모든 데이터에 대해 최적 해를 구하였다. 특히, Airland8의 m = 1 데이터에 대해서는 기존에 알려진 최적 해를 개선하였다.

Perch Landing Assisted by Thruster (PLAT): Concept and Trajectory Optimization

  • Tahk, Min-Jea;Han, Seungyeop;Lee, Byung-Yoon;Ahn, Jaemyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.378-390
    • /
    • 2016
  • A concept of the perch landing assisted by thruster (PLAT) for a fixed wind aircraft is proposed in this paper. The proposed concept is applicable to relatively large unmanned aerial vehicles (UAV), hence can overcome the limitation of existing perch landing technologies. A planar rigid body motion of an aircraft with aerodynamic and thruster forces and moments is modeled. An optimal control problem to minimize the fuel consumption by determining the histories of thruster and elevator deflection angle with specified terminal landing condition is formulated and solved. A parametric study for various initial conditions and thruster parameters is conducted to demonstrate the practicability of the proposed concept.

항공기 지상실험에 의한 소음 저감 방안에 관한 연구 (A study of the noise suppression system at the aircraft ground run-up test room)

  • 김인수;고철수;김형근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.718-723
    • /
    • 2003
  • The number of jet aircraft is increasing. The aircraft noise making people near airports nervous have become a serious social problem. The aircraft noise can be classified into two groups; noise being generated at take-off or landing and noise form run-up test on the ground. In this paper, we consider the aircraft noise from run-up test on the pound and we suggest the noise suppression system.

  • PDF

Effective simulation-based optimization algorithm for the aircraft runway scheduling problem

  • Wided, Ali;Fatima, Bouakkaz
    • Advances in aircraft and spacecraft science
    • /
    • 제9권4호
    • /
    • pp.335-347
    • /
    • 2022
  • Airport operations are well-known as a bottleneck in the air traffic system, putting growing pressure on the world's busiest airports to schedule arrivals and departures as efficiently as possible. Effective planning and control are essential for increasing airport efficiency and reducing aircraft delays. Many algorithms for controlling the arrival/departure queuing area are handled, considering it as first in first out queues, where any available aircraft can take off regardless of its relative sequence with other aircraft. In the suggested system, this problem was compared to the problem of scheduling n tasks (plane takeoffs and landings) on a multiple machine (runways). The proposed technique decreases delays (via efficient runway allocation or allowing aircraft to be expedited to reach a scheduled time) to enhance runway capacity and decrease delays. The aircraft scheduling problem entails arranging aircraft on available runways and scheduling their landings and departures while considering any operational constraints. The topic of this work is the scheduling of aircraft landings and takeoffs on multiple runways. Each aircraft's takeoff and landing schedules have time windows, as well as minimum separation intervals between landings and takeoffs. We present and evaluate a variety of comprehensive concepts and solutions for scheduling aircraft arrival and departure times, intending to reduce delays relative to scheduled times. When compared to First Come First Serve scheduling algorithm, the suggested strategy is usually successful in reducing the average waiting time and average tardiness while optimizing runway use.

Analysis of a shimming aircraft NLG controlled by the modified simple adaptive control

  • Alaimo, Andrea;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • 제7권5호
    • /
    • pp.459-473
    • /
    • 2020
  • The aircraft nose landing gear (NLG) can suffer of an unstable vibration called shimmy that is responsible of discomfort and of fatigue stress on the gear strut components. An adaptive controller is proposed in this paper to cope with the aforementioned problem. It is based on a method called Modified Simple Adaptive control (MSAC) which is able of governing the NLG motion by using a feedback signal that relies on just one output of the plant. The MSAC only asks for the passivity of the controlled plant. With this aim, a parallel feedforward compensator is employed in this work to let the system satisfies the almost strictly passivity (ASP) requirements. The nonlinear equations that govern the aircraft NLG shimmy vibration behavior are used to analyzed the controlled system transient response undergoing an initial disturbance and taking into account different taxiing speed values.

A Study on the Urban Air Mobility(UAM) Operation Pilot Qualification System

  • Kim, Su-Ro;Cho, Young-Jin;Jeon, Seung-Mok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권1호
    • /
    • pp.201-208
    • /
    • 2022
  • As around the world, ground and underground transportation capacity is reaching its limit, centering on urban areas. As urban traffic becomes congested, time and cost are astronomical, and environmental destruction caused by urban pollution is becoming increasingly serious. As a way to solve this problem, the means of flying over the air are in the spotlight as the next generation of future transportation, and the concept of urban air mobility (UAM, Urban Air Mobility) is defined as systematic planning. The development of an electric-powered vertical take-off (eVTOL) aircraft that obtains electric power through a battery using a personal aerial vehicle (PAV) as a means of transportation has accelerated. As the aircraft development of new technology aircraft in the evtol method is actively carried out, the need to prepare systems such as aircraft certification standards, pilot qualification systems, and qualification management is emerging. The Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA), which lead international standards, announced new special technical conditions and temporary regulations SCVTOL-01, respectively. However, the pilot qualification system for operating the uam aircraft has not yet been clearly announced. Therefore, this paper analyzes the recently announced FAA regulations and EASA regulations to identify differences and directions in perspectives on UAMs and study the existing vertical take-off and landing aircraft (VTOL) pilot qualification system to present directions for qualification classification.

항공기 착륙거리의 여유분 산정에 관한 연구 (A Study on the Allowances of Aircraft Landing Distance)

  • 노건수;김웅이
    • 한국항행학회논문지
    • /
    • 제17권3호
    • /
    • pp.279-284
    • /
    • 2013
  • 운항의 여러 단계 중 착륙단계에서 조종사들이 많은 부담을 느낀다. 이는 조종사들이 항공기 속도를 줄이고 접지하여 완전히 정지하는 동안 착륙안전에 영향을 미치는 여러 요소가 있기 때문이다. 만일 착륙하는데 활주로길이가 충분하다면 부담이 적을 수도 있다. 그러나 항상 그런 경우만 있는 것은 아니다. 따라서 착륙성능이 제한범위 내에 있는지 아닌지를 확인할 필요가 있다. 필요착륙거리는 시험비행 조종사에 의해 실증되어진 실제착륙거리에다가 항공사의 평균적인 조종사들을 위한 여유분을 포함한 것이다. FAR의 AFM(항공기 비행규정) 인가는 건조 및 습윤 활주로에서 수동착륙을 기반으로 한다. 기타 다른 활주로 조건에서는 인가가 필요하지 않다. JAR에서는 빙설/윤활활주로에서도 정해진 여유분을 포함시키도록 규정하고 있다. 자동착륙은 인가사항이 아니므로 실제착륙거리만 제공된다. 본 논문에서는 각 활주로 조건에서 포함된 거리 여유분을 분석하고자 한다. 또한 특정한 활주로 조건에서 여유분이 규정되어 있지 않은 경우 대안을 제시하고자 한다.

항공교통관제규칙과 비행장의 최적규모에 관한 연구 (A Study on the Air Traffic Control Rule and Optimal Capacity of Air Base)

  • 이기현
    • 한국국방경영분석학회지
    • /
    • 제2권1호
    • /
    • pp.177-184
    • /
    • 1976
  • As the organizational size of a military service or business increases and its management becomes complex, the success in its management depends less on static type of management but more on careful, dynamic type of management. In this thesis, an operations research technique is applied to the problems of determining optimal air traffic control rule and of optimal capacity of air base for a military air base. An airport runway is regarded as the service facility in a queueing mechanism, used by landing, low approach, and departing aircraft. The usual order of service gives priority different classes of aircraft such as landings, departures, and low approaches; here service disciplines are considered assigning priorities to different classes of aricraft grouped according to required runway time. Several such priority rules are compared by means of a steady-state queueing model with non-preemptive priorities. From the survey conducted for the thesis development, it was found that the flight pattern such as departure, law approach, and landing within a control zone, follows a Poisson distribution and the service time follows an Erlang distribution. In the problem of choosing the optimal air traffic control rule, the control rule of giving service priority to the aircraft with a minimum average waiting cost, regardless of flight patterns, was found to be the optimal one. Through a simulation with data collected at K-O O Air Base, the optimal take-off interval and the optimal capacity of aircraft to be employed were determined.

  • PDF

틸트로터 항공기 비선형 시뮬레이션 프로그램 개발 (Development of Simulation Program for Tilt Rotor Aircraft)

  • 유창선;최형식;박범진;안성준;강영신
    • 제어로봇시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.193-199
    • /
    • 2005
  • VTOL(Vertical Take-Off and Landing) aircraft is attractive due to the reason that it is not necessary to have long runway. However a rotorcraft has a definite limitation to fly at the high speed due to the stall at the tip of rotor. To solve this problem, tilt rotor, tilt wing and lift fan were researched and developed. It was verified that the tilt rotor aircraft among them was more effective in disk loading. On this basis, the tilt rotor aircraft has been made into XV-15, V-22, BA-609 and Eagle Eye. This paper shows a nonlinear simulation program for general tilt rotor aircraft that was developed in order to validate the flight characteristics of tilt rotor aircraft and verified through the simulation analysis.

UAM Port의 이·착륙 방향 검토를 위한 바람 자료 비교 (Comparison of wind data for review of take-off and landing directions of UAM port)

  • 박재우;박건환;홍혜진;구성관
    • 한국항행학회논문지
    • /
    • 제26권6호
    • /
    • pp.393-403
    • /
    • 2022
  • 도심지역 교통문제의 해결책으로 제시되고 있는 UAM의 초기 운영 형태는 다양한 연구에서 현재 항공기 중 VTOL 기체와 유사 할 것으로 제시되고 있다. 고정익 항공기가 이·착륙하는 활주로의 방향 결정과 유사한 형태로 VTOL 기체의 이착륙이 이루어지는 버티포트는 기체의 이·착륙 과정의 출발 및 도착의 비행 방향을 바람의 방향을 고려하여 정하도록 하고 있다. 일반적으로 공항이 건설되는 지역과 다르게 도심지의 경우 새로운 건물의 건축 등 지형 또는 장애물 변화 환경에 따라 바람의 특성이 지속적으로 변화될 수 있는 여건이 예상된다. 본 연구에서는 버티포트의 위치가 예상되는 도심 위치에서 이착륙 방향 검토를 위한 장기간의 실제 관측 데이터를 풍배도를 사용하여 비교 후 관측 기간 및 관측 위치에 따라 지상 바람의 특성과 주 바람의 방향이 변화 가능성을 확인하였다.