• Title/Summary/Keyword: Aircraft composite material

Search Result 141, Processing Time 0.024 seconds

Optimal lay-up of hybrid composite beams, plates and shells using cellular genetic algorithm

  • Rajasekaran, S.;Nalinaa, K.;Greeshma, S.;Poornima, N.S.;Kumar, V. Vinoop
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.557-580
    • /
    • 2003
  • Laminated composite structures find wide range of applications in many branches of technology. They are much suited for weight sensitive structures (like aircraft) where thinner and lighter members made of advanced fiber reinforced composite materials are used. The orientations of fiber direction in layers and number of layers and the thickness of the layers as well as material of composites play a major role in determining the strength and stiffness. Thus the basic design problem is to determine the optimum stacking sequence in terms of laminate thickness, material and fiber orientation. In this paper, a new optimization technique called Cellular Automata (CA) has been combined with Genetic Algorithm (GA) to develop a different search and optimization algorithm, known as Cellular Genetic Algorithm (CGA), which considers the laminate thickness, angle of fiber orientation and the fiber material as discrete variables. This CGA has been successfully applied to obtain the optimal fiber orientation, thickness and material lay-up for multi-layered composite hybrid beams plates and shells subjected to static buckling and dynamic constraints.

A Methodology to Determine Composite Material Allowables and Design Values Using Building Block Approach (빌딩블록 접근법을 이용한 복합재 재료 허용치 및 설계치 설정 방법)

  • Kim, Sung Joon;Lee, Seung-gyu;Hwang, In-hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.377-384
    • /
    • 2022
  • In the design of composite aircraft structures, it is very important to set material allowables and design values, which take into account certification. And when determining the material allowable and design value of composite structures, the static strength, damage tolerance requirements, and environmental effects should be considered. The building block approach has been applied to the civil and military aviation industry for a long time and provides the principal certification methodology. This current certification methodology is based on extensive testing including coupon, element, sub-component, and full scale test. In this paper, some examples of composite allowable tests have been presented and the fundamental background and application methods of the building block approach have been presented.

Analysis of Composite Microporosity according to Autoclave Vacuum Bag Processing Conditions (오토클레이브 진공포장법의 공정 조건에 따른 복합재의 미세기공률 분석)

  • Yoon, Hyun-Sung;An, Woo-Jin;Kim, Man-Sung;Hong, Sung-Jin;Song, Min-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.199-205
    • /
    • 2019
  • The composite material has the advantage that the fibers can be arranged in a desired direction and can be manufactured in one piece. However, micro voids can be formed due to micro air, moisture or improper curing temperature or pressure, which may cause the deterioration in mechanical strength. In this paper, the composite panels with different thicknesses were made by varying the curing pressure in an autoclave vacuum bag process and their microporosities were evaluated. Microporosity was measured by image analysis method, acid digestion method, and combustion method and their correlation with ultrasonic attenuation coefficient was analyzed. From the test results, it was found that the acid digestion method had the highest accuracy and the lower the curing pressure, the higher the microporosity and the ultrasonic attenuation coefficient. In addition, the microporosity and the ultrasonic attenuation coefficient were increased as the thickness of the composite panel was increased at the same curing pressure.

Design of an Aircraft Composite Window frame Using VaRTM Process (수지 충전 공정을 이용한 항공기 윈도우 프레임 설계)

  • Kim, Wie-Dae;Hong, Dae-Jin
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2006
  • This is the preliminary study to develop composite window frame of commercial aircraft using VaRTM process. For two candidate carbon fabrics(triaxial overbraid, sleeving braider), specimens were fabricated using VaRTM process, and the physical & mechanical property tests were performed to obtain the material properties according to ASTM. FEM analysis for each candidate carbon fabric was performed to find the minimum number of plies and weight for composite window frame to satisfy the design requirements. In this study, Tsai-Wu strength failure criterion was used to evaluate the safety of structure.

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.

The characteristic evaluation of high frictional resistance prepreg influencing honeycomb core crush (하니컴 코어 붕괴에 영향을 주는 고 마찰 저항 프리프레그의 특성 평가)

  • Han J. W.;Kim G. J.;Kim J. M.;Jin Y. J.;Seo J. J.;Kim J. H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.270-274
    • /
    • 2004
  • Aircraft composite structure with honeycomb core experiences core crush problem in manufacturing. To prevent core crush additional processes are needed such as core stabilization and prepreg material tie-down and this is the cause of increasing cost. Recent study shows that high friction prepreg prevent core crush without additional process. This paper presents the analysis of high frictional material which attracts lots of interests through physical property, mechanical property and microscopic morphology and the cause of friction.

  • PDF

Analysis Method of Transmission Characterization for Multi-layered Composite Material Based on Homogenization Method

  • Hyun, Se-Young;Song, Yong-Ha;Jeoun, Young-Mi;Kim, Bong-Gyu
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.59-65
    • /
    • 2021
  • In this paper, the transmission characteristics of the multi-layered composite material with wire mesh and honeycomb core for aircraft applications have been analyzed with the proposed method. The proposed method converts the conductive wire mesh into effective layer, while for the dielectric honeycomb core, effective permittivity has been derived based on volume fraction with the proposed method. The proposed method has been verified through comparison with full-wave simulation and revealed excellent. In addition, the calculation time of the proposed method is a few order of magnitude faster in comparison with the full-wave simulation.

Prediction of stiffness degradation in composite laminate with transverse cracking and delamination under hygrothermal conditions-desorption case

  • B. Boukert;M. Khodjet-Kesba;A. Benkhedda;E.A. Adda Bedia
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.1-21
    • /
    • 2024
  • The stiffness reduction of cross-ply composite laminates featuring a transverse cracking and delamination within the mid-layer is predicted through utilization of a modified shear-lag model, incorporating a stress perturbation function. Good agreement is obtained by comparing the prediction models and experimental data. The material characteristics of the composite are affected by fluctuations in temperature and transient moisture concentration distribution in desorption case, based on a micro-mechanical model of laminates. The transient and non-uniform moisture concentration distribution induces a stiffness reduction. The obtained results demonstrate the stiffness degradation dependence on factors such as cracks density, thickness ratio and environmental conditions. The present study underscores the significance of comprehending the degradation of material properties in the failure progression of laminates, particularly in instances of extensive delamination growth.

Abnormal Detection of CTLS Aircraft Wing Structure using SWT (SWT를 이용한 CTLS항공기 날개 구조물 이상탐지)

  • Shin, Hyun-Sung;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.359-366
    • /
    • 2018
  • In this paper, the noise is removed by using CTLS aircraft installed FBG sensor inside the aircraft wing. We suggest a normal wavelet transform scheme with motion - invariant characteristics for noise reduction. In the case of installing FBG sensors inside the composite material as in CTLS, large and small empty spaces and parts or sections are generated between the adhesive layers, and a signal splitting problem occurs. FBG sensor is not affected by noise. but eletromagnetic, light source, light detector and signal processing device are influeced by noise because these are eletronic components what affected by eletromagnetic wave. because of this, errors are occured. Experimental results show that the noise can be removed using normal wavelet transform and more accurate data detection is possible.

Thermal Deformation of Carbon Fiber Reinforced Composite by Cure Shrinkage (탄소섬유강화 복합재료 성형시 화학수축에 의한 변형연구)

  • Choi, Eun-Seong;Kim, Wie-Dae
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.404-411
    • /
    • 2018
  • As the autoclave process progresses in a given cure cycle, residual stress in the composite product is induced by cure shrinkage of the resin. As a result, It generates the thermal deformation such as spring-in and warpage, and the inaccuracy of the final product increases. It is important to predict thermal deformation in aerospace parts which require precise fabrication. The research has been done on predicting and grasping curing process of composite material. In this study, the cure mechanism of composite materials according to the process is predicted through finite element analysis, and the effect of cure shrinkage on thermal deformation generated by the process is analyzed.