• Title/Summary/Keyword: Aircraft composite material

Search Result 141, Processing Time 0.028 seconds

Selection Methodology of Tool for Co-cured Composite Materials (동시경화용 복합재료의 특성에 따른 금형의 선택방법)

  • 홍중표;이종옥;이원곤;홍정수;지우석;조한준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.183-188
    • /
    • 2002
  • Co-cured composite materials has its own characteristics, so its thermal expansion is different each other. The selection of tool material for co-cured composite part in high temperature more over $350^{circ}F$ and 50 Psi pressure have to consider part thermal expansion, size, shape, and economic aspect in production line. So it is important choose tooling material in manufacturing composite parts. We called the tool for airplane composite parts as BAJ (Bonding Assembly Jig). Composite parts are cured on the BAJ in autoclave. BAJ have to stable at high temperature over $350^{circ}F$ and 50 Psi pressure, Considering composite parts' dimensional tolerance compare to heat up in autoclave. This paper come from the results of the experiment at the composite parts production line and review other aircraft company's method for tooling This is for the engineer engaged in composite parts manufacturing.

  • PDF

Development of Structural CFRP according to BMS Certification Standard (BMS 인증기준에 따른 구조용 CFRP 개발)

  • Kang, Byong-Yun;Son, Chang-Suk;Moon, Chang-Kwon;Nam, Ki-Woo;Kim, Yoon-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.92-97
    • /
    • 2009
  • In order to export aircraft components or substructures, it is necessary to get a certification from the main company for the components or an airworthiness certification from the FAA. In Korea, those processes are performed by a small number of private companies for aircraft components. However, airworthiness certification has never been done in the company. To export an assembled aircraft, whether small or large, it is obligatory to get a certification for the aircraft being exported. Currently, the Korean government is trying to get BASA agreement in a few years. For a mid-size company, it is easier to get the NADCAP audit process for the supply of aircraft components to the main company. In this paper, the overall process of aircraft certification is discussed and airworthiness certification is treated for export aircraft. Moreover, the NADCAP audit process is described in detail by introducing example parts made of composite material. This detailed process would be very helpful to a small or mid-size company that wants to develop and deliver aircraft components to foreign companies.

Analytical Study for the Safety of the Bird Strike to the Small Aircraft Having a Composite Wing (복합재 주익을 갖는 소형항공기 조류충돌 시 안전성에 관한 해석적 연구)

  • Park, Ill-Kyung;Kim, Seung-Jun;Choe, Ik-Hyun;An, Seok-Min;Yeo, Chan-Hong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.117-124
    • /
    • 2010
  • The bird strike to small aircraft has not been an issue because of its low speed and usage as a private aircraft. So, the compliance of the bird strike regulation is limited to large fixed-wing aircraft such as the commuter category in FAR Part 23 and the civil aircraft in FAR Part 25, generally. However, the forecast of dramatic increasing of VLJ(Very Light Jet), the usage of a composite material for an aircraft structure and flight time of general aviation due to Air-taxi for the point to point transportation, would rise up the need of bird strike regulations and a safety enhancement in normal and utility categorized aircraft. In this study, the safety of bird strike to small aircraft wing leading edge made of a metal and a composite material were compared using the explicit finite element analysis.

The Vibration Characteristic of Carbon-Carbon Composite Material due to Tensile Loading (인장하중에 따른 Carbon/Carbon복합재의 진동특성)

  • Oh, Seung-Gyu;Kwac, Lee-Ku;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.740-744
    • /
    • 2011
  • Carbon-carbon composite material is the reinforced carbon fiber. Because of its high strength, elasticity and the excellent heat-resisting property in high temperature, carbon-carbon composite material has been used in many fields such as aerospace and automotive industries, etc. Especially, aircraft brake discs used at aerospace can be cracked due to its fatigue and vibration under various loading condition. This research is focused on the influence of the vibration of carbon-carbon composite material by using accelerometer with impact hammer excitation. And the change of vibration mode will be known by applying tensile loading test.

Impact Force and Acoustic Analysis on Composite Plates with In-plane Loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Hwang, In-Hee;Hong, Chang-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2012
  • The potential hazards resulting from a low-velocity impact(bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or leading edges has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

Crack Propagation at Boundary Face of Composite Compact Tension Specimen

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.337-341
    • /
    • 2013
  • In this study, fatigue crack propagation in composite material under fatigue is investigated by simulation result. When another material on the specimen exists vertically to the crack line, the phenomena that crack may go straight or propagate along the boundary face according to the elastic modulus ratio of another material to matrix are investigated with compact tension specimen by compliance method. Crack propagation direction is evaluated by compliance method. By arranging this study result systematically about the crack propagation behavior due to the stiffness of inhomogeneous material, high-tech material (automobile, aircraft and steel industry) can be improved. The estimation of safety design and life (construction & nuclear power station, etc.) will be of great value industrially.

Recent Trends in Composite Materials for Aircrafts (항공기용 복합소재의 개발 및 연구동향)

  • Kim, Deuk Ju;Oh, Dae Youn;Jeong, Moon Ki;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.252-258
    • /
    • 2016
  • The weight reduction and improved mechanical property are one of the prime factors to develop new materials for the aerospace industry. Composite materials have thus become the most attractive candidate for aircraft and other means of transportations due to their excellent property and light weight. In particular, fiber reinforced polymer (FRP) composite materials have been used as an alternative to metals in the aircraft. The composite materials have shown improved properties compared to those of metal and polymeric materials, which made the composites being used as the skin structure of the airplane. This review introduces different types of materials which have been developed from the FRP composite material and also one of the most advantageous ways to employ the composites in aircraft.

AFP mandrel development for composite aircraft fuselage skin

  • Kumar, Deepak;Ko, Myung-Gyun;Roy, Rene;Kweon, Jin-Hwe;Choi, Jin-Ho;Jeong, Soon-Kwan;Jeon, Jin-Woo;Han, Jun-Su
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.32-43
    • /
    • 2014
  • Automatic fiber placement (AFP) has become a popular processing technique for composites in the aerospace industry, due to its ability to place prepregs or tapes precisely in the exact position when complex parts are being manufactured. This paper presents the design, analysis, and manufacture of an AFP mandrel for composite aircraft fuselage skin fabrication. According to the design requirements, an AFP mandrel was developed and a numerical study was performed through the finite element method. Linear static load analyses were performed considering the mandrel structure self-weight and a 2940 N load from the AFP machine head. Modal analysis was also performed to determine the mandrel's natural frequencies. These analyses confirmed that the proposed mandrel meets the design requirements. A prototype mandrel was then manufactured and used to fabricate a composite fuselage skin. Material load tests were conducted on the AFP fuselage skin curved laminates, equivalent flat AFP, and hand layup laminates. The flat AFP and hand layup laminates showed almost identical strength results in tension and compression. Compared to hand layup, the flat AFP laminate modulus was 5.2% higher in tension and 12.6% lower in compression. The AFP curved laminates had an ultimate compressive strength of 1.6% to 8.7% higher than flat laminates. The FEM simulation predicted strengths were 4% higher in tension and 11% higher in compression than the flat laminate test results.

A Study on Fatigue Characteristics of Aircraft Brake Disk Material (CFRC) (항공기 브레이크 디스크(CFRC)의 피로특성연구)

  • Kim, Hye Sung;Kim, Hyun Soo;Kam, Moon Gap;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.3
    • /
    • pp.131-136
    • /
    • 2008
  • The fatigue characteristics of the carbon fiber reinforced carbon composites (CFRC) material are necessary for the advanced industries requiring the thermal resistance. The research and development of CFRC have been in progress in the field of aerospace and defense industry. In this paper, we investigated the fatigue characteristics of CFRC by using an aircraft brake disk system. As the results of a series of tensile tests, the tensile strengths of CFRC were appeared 102.8 MPa ($0^{\circ}$), 98.6 MPa ($60^{\circ}$), and 95.5 MPa ($90^{\circ}$), respectively. It was showed that CFRC had better tensile property than the usual composite materials. As the results of fatigue tests, the fatigue limit was ~ 77 MPa, which is under the 75% of the maximum tensile load. CFRC is recommended as a strong potential composite materials because the carbon fibers are closely packed and strongly bonded between the carbon fibers.

A Study on Job Stress of Aircraft Composite Material Part Manufacturing Workers (항공기 복합소재 부품 제조업 종사자의 직무 스트레스 분석)

  • Yoon, Hoon-Yong;Lee, Choon-Jae;Jang, Jun-Hyuk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.751-762
    • /
    • 2010
  • The purpose of this study was to investigate the job stress factors of aircraft composite material part manufacturing workers using survey based on 'Job stress factors evaluation tool for Koreans' that was developed by KOSHA in 2003. Two hundred and fifty workers participated in this study, and among them 204 responses were analyzed for this study due to the unreliability and insincerity of responses. The eight job stress factors which are physical environment, job autonomy, job insecurity, organizational system, workplace culture, unfair compensation, relationship conflict, and job requirement were analyzed. The results showed that the stress level of the six job stress factors which are physical environment, job autonomy, job insecurity, organizational system, workplace culture, unfair compensation was relatively higher than that of other industry workers. Generally, all eight job stress factors showed higher stress with temporary workers than with permanent workers, and especially job autonomy, job insecurity, organizational system, and unfair compensation factors showed statistically significant differences (p<0.05). Since the temporary workers are insecure with their job, weak position in organization, having little self-control for the job and lower pay level than that of permanent workers though the job is as same as permanent workers', the stress level of above job stress factors would be much higher than that of the other factors. The group of unsatisfactory with workplace showed higher job stress than group of satisfactory with workplace in all job stress factors, as expected, at the statistically significance level (p<0.05). From the results of this study, the work loss due to the job stress could be prevented, and accurate stress factors could be removed at the workplace. Also the job stress management program can be implemented to improve the work efficiency and the workers' quality of life.