• Title/Summary/Keyword: Aircraft Trajectory

Search Result 95, Processing Time 0.022 seconds

Establishment of Safety Alert Systems for Urban Air Mobility Operations (도심항공교통(UAM) 운항을 위한 안전 경고 기능 구축)

  • Sang-il Choi;Seung-yeon Nam;Hui-yang Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.163-171
    • /
    • 2024
  • In the existing air traffic management (ATM) system, various types of safety alert features are provided based on trajectory data to ensure the safety of aircraft operations, along with aircraft position and detailed flight information. The urban air traffic management (UATM) system for urban air mobility (UAM) should also provide safety alert features to ensure the safety of UAM operations. Considering the operational environment of UAM, it is necessary that the safety alert features provided at least match or exceed those available in the existing ATM system. This study aims to present the safety alert features of the new UATM system that differ from those provided by the existing ATM system before introduction and commercialization of UAM. The study was conducted focusing on the safety alert features that should be provided in the event of a deviation from the UAM's path, and the establishment of the safety alert features was carried out in two parts: approach path monitor (APM), which is applied during the approach phase, and route adherence monitoring (RAM), which is applied during the cruise phase.

Studies on the Behavior of SO2 and NOx over Yellow Sea Area during Long Term Aircraft Measurements(1997~2007) (장기간(1997~2007) 창공관측을 이용한 서해상 SO2 및 NOx의 거동 연구)

  • Song, Hyung-Do;Choi, Jin-Soo;Jang, Im-Suk;Kim, Jeong-Soo;Lee, Suk-Jo
    • Journal of Environmental Science International
    • /
    • v.18 no.5
    • /
    • pp.569-578
    • /
    • 2009
  • Aircraft Measurements of gaseous pollutants($SO_2$, NOx and $O_3$) in the Yellow Sea area, were carried out on 1997-2007. Main measurement site in 124$^{\circ}$-127$^{\circ}$E, 35$^{\circ}$-37$^{\circ}$N (in the Yellow Sea), have been done along the paths classified vertically and zonally. To understand how the air stream affects Long-range transboundary pollutants in Northease Asia (LTP), the tracks of pollutants in northeast Asia have been analyzed by dividing into 6 different regions(regions I-V and L). Compared with Korea's local sources and western north Pacific influenced by the Yellow Sea, when the air stream from region II is dominant, the $SO_2$ concentrations are 3-6times higher. In region II and III, $SO_2$ concentrations are represented highest at 25.0 and 14.7 ppb, respectively. However, in other regions, $SO_2$ concentration was recorderd the highest at 1.1-3.8 ppb, which is 7-15% higher then the highest one over the region II and III. During 1997-2007, the mean amount of incoming pollutants is 0.162 $ton/km{\cdot}hr$ exceeding about 5-times mean amount of outgoing pollutants over the West Sea. During the observed period, the amount of incoming and outgoing $SO_2$ over the Yellow Sea is the highest in winter, at 0.224 $ton/(km{\cdot}hr)$ and 0.120 $ton/(km{\cdot}hr)$, respectively.

Design of Guidance and Control Algorithm for Autolanding In Windshear Environment Using Fuzzy Gain Scheduling (퍼지 게인스케듈링을 적용한 자동착륙 유도제어 알고리즘 설계 : 윈쉬어 환경에서의 착륙)

  • Ha, Cheol-Keun;Ahn, Sang-Woon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.95-103
    • /
    • 2008
  • This paper deals with the problem of autolanding for aircraft under windshear environment for which the landing trajectory is given. It is well known that the landing maneuver in windshear turbulence is very dangerous and hard for the pilot to control because windshear is unpredictable in when and where it happens and its aerodynamic characteristics are complicated. In order to accomplish satisfactory autolanding maneuver in this environment, we propose a gain-scheduled controller. The proposed controller consists of three parts: PID controller, called baseline controller, which is designed to satisfy requirements of stability and performance without considering windshear, gain scheduler based on fuzzy logic, and safety decision logic, which decides if the current autolanding maneuver needs to be aborted or not. The controller is applied to a 6-DOF simulation model of the associated airplane in order to illustrate the effectiveness of the proposed control algorithm. It is noted that a cross wind in the lateral direction is included to the simulation model. From the simulation results it is observed that the proposed gain scheduled controller shows superior performance than the case of controller without gain scheduling even in severe downburst and tailwind region of windshear. In addition, touchdown along centerline of the runway is more precise for the proposed controller than for the controller without gain scheduling in the cross wind and the tailwind.

Design and Manufacture of Phase Shifter for 400 W Pulse Signal in X-Band (X-대역 400 W 펄스신호를 위한 위상변환기 설계 및 제작)

  • Park, In-Yong;Min, Seung-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.251-256
    • /
    • 2018
  • In the case of a radar repeater that used for the trajectory tracking of a high-speed aircraft, it emits pulses of short width. For phase displacement of these signals a branch type phase shifter is used. The phase on the transmission line is changed by utilizing the variable reactance at the end of the displacement branch transmission line. Further, it is easy to control the high output signal, and there is an advantage that the insertion loss is not large even when the reactance fails. In this paper, we will discuss the fabrication test results of a 400 W class phase shifter that sequentially displaces the phase at $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$.

Integrated Navigation Design Using a Gimbaled Vision/LiDAR System with an Approximate Ground Description Model

  • Yun, Sukchang;Lee, Young Jae;Kim, Chang Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.369-378
    • /
    • 2013
  • This paper presents a vision/LiDAR integrated navigation system that provides accurate relative navigation performance on a general ground surface, in GNSS-denied environments. The considered ground surface during flight is approximated as a piecewise continuous model, with flat and slope surface profiles. In its implementation, the presented system consists of a strapdown IMU, and an aided sensor block, consisting of a vision sensor and a LiDAR on a stabilized gimbal platform. Thus, two-dimensional optical flow vectors from the vision sensor, and range information from LiDAR to ground are used to overcome the performance limit of the tactical grade inertial navigation solution without GNSS signal. In filter realization, the INS error model is employed, with measurement vectors containing two-dimensional velocity errors, and one differenced altitude in the navigation frame. In computing the altitude difference, the ground slope angle is estimated in a novel way, through two bisectional LiDAR signals, with a practical assumption representing a general ground profile. Finally, the overall integrated system is implemented, based on the extended Kalman filter framework, and the performance is demonstrated through a simulation study, with an aircraft flight trajectory scenario.

Prediction of Erosion Rate in Passages of a Turbine Cascade with Two-Phase flow (터빈익렬 유로에서 2상 유동에 따른 삭마량 예측)

  • Yu, Man Sun;Kim, Wan Sik;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.301-308
    • /
    • 1999
  • The present study investigates numerically particle laden flow through compressor cascades and a rocket nozzle. Engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor blading and rotor path components, partial or total blockage of cooling passage and engine control system degradation. Numerical prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Aluminum oxide ($Al_2O_3$) Particles included in solid rocket propelant make ablative the rocket motor nozzle and imped the expansion processes of propulsion. By the definition of particle deposition efficiency, characteristics of particles impaction are considered quantitatively Stoke number is defined over the various particle sizes and particle trajectories are treated by Lagrangian approach. Particle stability is considered by definition of Weber number in rocket nozzle and particle breakup and evaporation is simulated in a rocket nozzle.

  • PDF

A Study on Optimum Hybrid Post-Processing Method for Multiple Telemetry Streams (원격측정 다중 스트림 최적 혼합 후처리 기법 연구)

  • Kim, In Jong;Lee, Sungpil;Chang, Dukjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.616-624
    • /
    • 2019
  • In order to understand flying aircraft, satellite, missile, etc, a telemetry ground system is used to receive, record, and process the transmitted radio signal from vehicles. In some cases, a line-of-sight communication is not possible along to the trajectory of vehicles, and multipath fading result in a shade area of communication. A number of telemetry ground systems are installed to overcome this limitation, and acquire the transmitted signal seamlessly. The telemetry signals received by multiple independent ground systems have independent probability of errors since they experienced their own communication channels. In other words, we can exploit the independent error characteristics of received signals by processing them in a hybrid method. The optimum hybrid post-process method is proposed in this study, and applied to process telemetry signals acquired from flight tests.

Influence of geometrical parameters of reentry capsules on flow characteristics at Mach 6

  • R.C. Mehta
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.2
    • /
    • pp.177-194
    • /
    • 2024
  • The objective of this paper is to compute entire flow field over Apollo-II, Aerospace Reentry Demonstrator (ARD), Orbital Experiment (OREX) with sharp shoulder and rounded shape shoulder and Space Recovery Experiment (SRE) at different flare-cone half-angle of 20° and 35°. This paper addresses numerical solutions of the compressible three-dimensional Euler equations on hexahedral meshes for a freestream Mach 6 and at an angle of incidence 5°. Furthermore, spatial discretization is accomplished by a cell centred finite volume formulation solution and advanced in time by an explicit multi-stage Runge-Kutta method. The flow field characteristics, distribution of surface pressure coefficient and Mach number on fore-body and aft-body are presented as a function of the geometrical parameters of many reentry capsules. The surface pressure variation is numerically integrated to obtain the aerodynamic drag and compared well with impact theory. The present numerical study has observed the significant dependence of the blunt body and the aft-body geometry of the vehicle and can be used to study atmospheric conditions during re-entry trajectory. The numerical analysis reveals the significant influence of capsule geometry on the flow characteristics of the mechanism of upstream and structure of the flow near the wake region and aerodynamic drag coefficient.

Analysis of Particle Laden Flow and Erosion Rate Around Turbine Cascade (터빈 익렬 주위에서의 부유입자 유동 및 마모량 해석)

  • 김완식;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.14-23
    • /
    • 1998
  • The present study investigates numerically particle laden flow through compressor cascade. In general, a lot of turbine engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor binding and rotor path components, partial or total blockage of cooling passage and engine control system degradation.. Initial damages can not be serious but cumulation of damages influences on safety of aircraft control and economical maintenance cost of engine system can be increased. When dust, materials and volcanic particles in the atmosphere flow in the compressor, it is necessary to predict damaged and deposited region of compressor blades. To the various flow inlet angle, predictions of particles trajectory in compressor cascade by Lagrangian method are presented and impulses by impaction of particles at blade surface are calculated. By the definition of particle deposition efficiency, characteristics of particles impact are considered quantitatively. With these prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Improvements like coating of blade surface could be found, by above prediction.

  • PDF

Spatial Distribution and Variation of Long-range Transboundary Air Pollutants Flux during 1997~2004 (장거리이동 대기오염물질 이동량의 공간적 분포와 변화 추이(1997~2004))

  • Han J. S.;Kim Y. M.;Ahn J. Y.;Kong B. J.;Choi J. S.;Lee S. U.;Lee S. J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2006
  • Aircraft measurements have been executed for the purpose of monitoring the long range transported air pollution and estimation of air pollutant in/out-flux over the Yellow sea. Total 74 missions of measurements have been done since 1997, mainly in spring and fall. The main study domain was over $124^{\circ}$E $/sim$ $124^{\circ}$E, $35^{\circ}$N $/sim$ $37^{\circ}$N below 3,000m. In long-term trends, mixing ratios of $SO_{2}$N were around 2 ppbv expect in summer ( < 1 ppbv). NOx exhibited 24 ppbv and have no clear annual trends over the Yellow Sea. The concentrations of 03 were 51, 58, 41 ppbv in spring, summer and fall-winter, respectively. Backward trajectory was performed for three days to investigate the source regions of the air mass. Six regions were divided around Korea peninsular centering at $36^{\circ}$N, $126^{\circ}$E. I, II, III, IV and V regions represents in sequence northeast China and Siberia, Sandong peninsula and Balhae gulf, Sanghi and southern China, the south Pacific included Jeju island and the East sea included Japan. L region correspond to the airmass from Korea peninsula. Influx of $SO_{2}$N was approximately five times higher than outflux in yearly flux variation and showed a decreasing long-term trend since 1998. NOx outflux was average 0.095 ton/km/hr and three times higher than $SO_{2}$ outflux. In/out flux of 03 showed even distribution in yearly basis except 2002 (influx 5.45 ton/km/hr). The transported amounts from I, II, III regions were much higher than those from other region. In seasonal flux variation, influx levels of gas phases were the lowest in summer and the levels gradually increased from fall toward spring. As a result, transport of pollutants begins from fall and prevails in winter and spring.