DOI QR코드

DOI QR Code

Influence of geometrical parameters of reentry capsules on flow characteristics at Mach 6

  • R.C. Mehta (Department of Aeronautical Engineering, Noorul Islam Centre for Higher Education)
  • Received : 2024.05.28
  • Accepted : 2024.08.16
  • Published : 2024.06.25

Abstract

The objective of this paper is to compute entire flow field over Apollo-II, Aerospace Reentry Demonstrator (ARD), Orbital Experiment (OREX) with sharp shoulder and rounded shape shoulder and Space Recovery Experiment (SRE) at different flare-cone half-angle of 20° and 35°. This paper addresses numerical solutions of the compressible three-dimensional Euler equations on hexahedral meshes for a freestream Mach 6 and at an angle of incidence 5°. Furthermore, spatial discretization is accomplished by a cell centred finite volume formulation solution and advanced in time by an explicit multi-stage Runge-Kutta method. The flow field characteristics, distribution of surface pressure coefficient and Mach number on fore-body and aft-body are presented as a function of the geometrical parameters of many reentry capsules. The surface pressure variation is numerically integrated to obtain the aerodynamic drag and compared well with impact theory. The present numerical study has observed the significant dependence of the blunt body and the aft-body geometry of the vehicle and can be used to study atmospheric conditions during re-entry trajectory. The numerical analysis reveals the significant influence of capsule geometry on the flow characteristics of the mechanism of upstream and structure of the flow near the wake region and aerodynamic drag coefficient.

Keywords

References

  1. Afilipoae, T.P. and Stoia-Djeska, M. (2015), "Development of a three-dimensional unstructured euler solver for high-speed flows", Incas Bulletin, 7(4), 3-18. https://doi.org/10.13111/2066-8201.2015.7.4.1.
  2. Allen, H.J. and Eggers, J. (1958), "A study of the motion and aerodynamic heating of ballistic missiles entering the Earth's atmosphere at high supersonic speeds", Ames Aeronautical Laboratory, Moffett Field, California, NACA TR-1381.
  3. Barnhardt, M. and Candler, G.M. (2010), "CFD analysis of CUBRC base flow experiments", 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 1250. https://doi.org/AIAA 10.2514/6.2010-1250.
  4. Bertin, J.J. (1994), Hypersonic Aerothermodynamics, AIAA Education Series, American Institute of Aeronautics and Astronautics, Washington DC, USA.
  5. Cassanto, J.M. (1971), "Full scale flight test base pressure results for a blunt planetary reentry probe configuration", J. Spacecraft Rocket., 8(9), 996-998. https://doi.org/10.2514/3.30338.
  6. Desikan, S.L.N., Patil, M.N. and Subramanian, S. (2015), "Understanding of flow features over a typical crew module at Mach 4", Aeronaut. J., 119, 727-746. https://doi.org/10.1017/S0001924000010794.
  7. Dirkx, D. and Mooji, E. (2017), Conceptual Shape Optimization of Entry Vehicles, Springer Cham, Germany.
  8. Giorgio, S.D., Quagliarella, D., Pezzella, G. and Pirozzoli, S. (2019), "An aerothermodynamics design optimization framework for hypersonic vehicles", Aerosp. Sci. Technol., 84, 339-347. https://doi.org/10.1016/j.ast.2018.09.042.
  9. Hornung, H., Martinez Schramm, J. and Hannemann, K. (2019), "Hypersonic flow over spherically blunted cone modules for atmospheric entry. Part 1. The sharp cone and the sphere", J. Fluid Mech., 871, 1097-1116. https://doi.org/10.1017/jfm.2019.342.
  10. Hu, Y., Huang, H. and Zhang, Z. (2017), "Numerical simulation of a hypersonic flow past a blunt body", Int. J. Numer. Meth. Heat Fluid Flow, 27(6), 1351-1364. https://doi.org/10.1108/HFF-05-2016-0187.
  11. Kazemba, C.D., Braun, R.D., Clark, I.G. and Schoenenberger, M. (2012), "Survey of blunt body dynamic stability in supersonic flow", AIAA Atmospheric Flight Mechanics Conference, 4509. https://doi.org/10.2514/6.2012-4509.
  12. Lappas, V., Klothakis, A., Nikolos, I. and Theofilis, V. (2024), "On the design of miniature re-entry vehicles for Mesosphere exploration, Part I: Theoretical consideration", AIAA SCITECH 2024 Forum, 1160. https://doi.org/10.2514/6.2024-1160.
  13. Laurence, S.J., Schramm, J.M. and Hannemann, K. (2012), "Force and moment measurements on a free-flying capsule model in a high-enthalpy shock tunnel", 28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference including the Aerospace T&E Days Forum, 2861. https://doi.org/10.2514/6.2012-2861.
  14. Lee, L. (1955), Hypersonic Flow, Institute Aeronautical Science, Preprint No. 554.
  15. Liever, P.A., Habchi, S.D., Burnell, S.I. and Lingard, J.S. (2003), "Computational fluid dynamics prediction of the Beagle 2 aerodynamic data base", J. Spacecraft Rocket., 40(5), 632-638. https://doi.org/10.2514/2.691.
  16. Lin, T.C., Sproul, L.K., Kim, M., Olmos, M. and Feiz, H. (2006), "Hypersonic reentry vehicle wake flow fields at angle of attack", 44th AIAA Aerospace Sciences Meeting and Exhibit, 582. https://doi.org/10.2514/6.2006-582.
  17. McLaughlin, C.AS., Mance, S. and Lechtenberg, T. (2011), "Drag coefficient estimation in orbit determination", J. Astonaut. Sci., 58(3). 513-530. http://doi.org/10.1007/BF03321183.
  18. Mehta, R.C. (2017c), "Multi-block structured grid generation for computational fluid dynamics", Scholar J. Eng. Technol., 5(8), 387-219. https://doi.org/10.21276/sjet.
  19. Mehta, R.C. (2019a), "Numerical simulation of base pressure and drag of space re-entry capsules at high speed, hypersonic vehicles-past, present and future developments", Hypersonic Vehicles-Past, Present and Future Developments, UK. https://doi.org/10.5772/intechopen.83651.
  20. Mehta, R.C. and Rathakrishan, T. (2023b), "Computation of aerodynamic coefficients of a re-entry capsule at Mach 6", Adv. Aircraft Spacecraft Sci., 10(5) 457-471. https://doi.org/10.12989/aas.2023.10.5.457.
  21. Murphy, K.J., Bibb, K.L., Brauckmann, G.J., Rhode, M.N., Owens, B., Chan, D.T., Walker, E.L., Bell, J.H. and Wilson, T.M. (2011), "Orion crew module aerodynamic testing", 29th AIAA Applied Aerodynamics Conference, 3502. https://doi.org/10.2514/6.2011-3502.
  22. Mwaene, E. and Banda, L.O.L. (2024), "Aerodynamic design and performance analysis of Mars ascent vehicles", Qeios ID: VJ9NXB. https://doi.org/10.32388/VJ9NXB.
  23. Narayan, A., Narayanan, S., Kumar, R., Kumar, C.S. and Jagadeesh, G. (2019), "Hypersonic flow past a spherically blunted nose cone: A computational study", Progr. Comput. Fluid Dyn., 20(2), 105-123. https://doi.org/10.1504/PCFD.2019.10026157.
  24. Neville, A.G. and Candler, G.V. (2015), "Computational fluid dynamics based axisymmetric aero-shell shape optimization in hypersonic entry conditions", J. Spacecraft Rocket., 52(1), 76-88. https://doi.org/10.2514/1.A32678.
  25. Nieden, P.Z. and Olivier, H. (2007), "Determination of atmospheric densities from reentry flight data", J. Spacecraft Rocket., 44(2) 332-337. https://doi.org/10.2514/1.19338.
  26. Noack, R.W. and Lopez, A.R. (1988), "Inviscid flow field analysis of complex vehicles: Vol. I Description of numerical methods", Report SAND-0776/1, Sandia National Laboratory.
  27. Otsu, H. (2021), "Aerodynamic characteristics of re-entry capsules with hyperbolic contours", Aerosp., 8, 287. https://doi.org/10.3390/aerospace8100287.
  28. Ottens, H.B.A. (2001), "Preliminary computational investigation on aerodynamic phenomena DELFT aerospace reentry test vehicle", Proceedings of the 4 th European Symposium on Aerothermodynamics for Allocations, ESA Capua, Italy.
  29. Raju, M. (2015), "CFD analysis of mars phoenix capsules at Mach Number 10", J. Aeronaut. Aerosp. Eng., 4(01), 4-7. https://doi.org/10.4172/2168-9792.100014.
  30. Rashid, F.L., Hussein, V., Habeeb, L.J., Hussein, A.K., Hamida, M., Ali, B. and Younis, O. (2023), "Numerical thermal analysis of re-entry Apollo model AS-202", J. Eng. Sci. Technol., 18(1), 693-705.
  31. Rose, J.C. and Brauckmann, G.J. (2011), "Aerodynamic and aero-acoustic wind-tunnel testing of the Orion Spacecraft", 29th AIAA Applied Aerodynamics Conference, 3160. https://doi.org/10.2514/6.2011-3160.
  32. Scattela, G. (2022), "Aerodynamical analysis of ExoMars capsule during Mach 5 Mars atmospheric descent", Master of Science in Aerospace Engineering, Universita degli Studi di Padova, Italy.
  33. Seager, C. and Agarwal, R.K. (2017), "Hypersonic blunt-body shape optimization for reducing drag and heat transfer", J. Thermophys. Heat Transf., 31(1), 48-55. https://doi.org/10.2514/1.T4650.
  34. Stremel, P.K., McMullen, M.S. and Garcia, J.A. (2011), "Computational aerodynamic simulations of the Orion command module", 29th AIAA Applied Aerodynamics Conference, 3503. https://doi.org/10.2514/6.2011-3503.
  35. Subramanian, S., Kurup, M.K.A., Kalimuthu, R. and Raveendran, P.G. (1996), "An experimental investigation of hypersonic aerodynamic characteristics of re-entry bi-conic configurations at Mach 6", Vikram Sarabhai Space Centre, Trivandrum, India.
  36. Theisinger, J.E. and Braun, R.D. (2009), "Multi-objective hypersonic entry aeroshell shape optimization", J. Spacecraft Rocket, 46(5), 957-966. https://doi.org/10.2514/1.41136.
  37. Truitt, R.W. (1959), Hypersonic Aerodynamics, Ronald Press, New York, USA.
  38. Viviani, A. and Pezzella, G. (2010a), "Computational flowfield analysis over a blunt-body re-entry vehicle", J. Spacecraft Rocket., 47(2), 258-270. https://doi.org/10.2514/1.40876.
  39. Viviani, A. and Pezzella, G. (2015b), Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles, Springer International Publishing A.G., Switzerland.
  40. Walpot, L.M.G., Wright, M.J., Noeding, P. and Schrijer, F. (2012), "Base flow investigation of the Apollo AS-202 command module", Progr. Aerosp. Sci., 48-49, 57-74. https://doi.org/10.1016/j.paerosci.2011.06.006.
  41. Weiland, C. (2014), Aerodynamic Data of Space Vehicles, Springer-Verlag, Berlin Heidelberg, Germany.
  42. Wood, W.A., Gnoffo, P.A. and Rault, D.F.G. (1996), "Aerothermodynamic analysis of Commercial Experiment Transporter (COMET) reentry capsule", 34th Aerospace Sciences Meeting and Exhibit, 316. https://doi.org/10.2514/6.1996-316.
  43. Zhenmiz, Z., Yunliancy, D., Yi, L. and Tieliang, Z. (2011), "Shape optimization design method for the conceptual design of reentry vehicles", Acta Astonautica Sincia, 32(11), 1971-1979.
  44. Zuppardi, G. (2019), "Influence of the Mars atmosphere model on aerodynamics of an entry capsule", Adv. Aircraft Spacecraft Sci., 6(3) 239-256. https://doi.org/10.12989/aas.2019.6.3.239.